AD-A154 785 DISTRIBUTED NAME MANAGEMENT(U) MASSACHUSETTS INST OF 1/2 -
TECH CAMBRIDGE LAB_FOR COMPUTER SCIENCE K R SOLLINS
- FEB 83 MIT/LCS/TR-331 N0@814-75-C-08661
UNCLASSIFIED F/G S/ NL

SRS St ey

- ’——. :- e NS ""_."‘—.".—".‘_'._v -------------------------- "
-t
& Mg 5
= s s
=Lk
o
| L
|
JL2s i pos
MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF SIANDARDS-]963~A
............ L-‘ _.:-;:-.._‘;._;,-‘_". ."‘."'~'~.. ettt e s e STt L s ‘M

AD-A154 785

OTIC FILE COPY

MIT/LCS/TR-331

DISTRIBUTED
NAME
MANAGEMENT

Karen Rosin Sollins

This research was supported by the Defense Advanced Research

Projects Agency of the Department of Defense and was monitored by
the Office of Naval Research under contract numbers N00014-75 C

D661/ NODO14 83 K 0125.

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSET'TS 02139

8 =& 12 nea

lo Unclassified
M SECUNITY CLASSIFICATION OF THIS PAGE (When Data Entered)
: READ INSTRUCTIONS
- 1. REPORT NUMBER 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
MIT/LCS/TR-331 AN-A I15Y 28
. 4. TITLE (and Subtitle) ; 5. TYPE OF REPORT & PERIOD COVERED
Distributed Name Management Ph.D dissertation ,’.1_

February 1985

6. PERFORMING ORG, REPORT NUMBER

MIT/LCS/TR-331
7. AUTHOR(S) 8. CONTRACT OR GRANT NUMRBER(s)
Karen Rosin Sollins DARPA/DOD

N00014-75-C-0661 PRI
NQQ014-83-K-0125 R
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM EL EMENT, PROJECT, TASK Coe
AREA & WORK UNIT NUMBERS
MIT Laboratory for Computer Science - -
545 Technology Square SEENE
Cambridge, MA 02139 -7

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE) .
DARPA/DOD February 1985
1400 Wilson Blvd. ‘3-16"2“5" OF PAGES]

Arlington, VA 22209

14, MONITORING AGENCY NAME & ADDRESS(!f different from Controlling Otfice) 15. SECURITY CLASS. (of this report)

ONR/Department of the Navy

Information Systems Program Unclassified
Arlington, VA 22217 782 DECL ASSIFICATION/ DOWNGRADING

16. DISTRIBUTION STATEMENT (of this Report)
Approved for public release, distribution is unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, il dilferent from Report)
unlimited

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse aide If necessary and identify by block number) e
Naming, distributed system, sharing, cooperation, software ool
environment, strong typing. S

20 ABSTRACT (Continue on reverse side if neceasary and identify by block number)

The problem being addressed in this research is the design of

a naming facility achieving the following goals. First, two
functions on names must be supported: accessing a named object,
and acting as a place holder for the named object. Second, it
must be possible to share those names. Third, communication of
the 1am2s as well as communication by use of the names must be
possiple. Finally, feasibility of implementation is a goal.

DD “2:“‘” 1473 e£o0iTioN OF 1 NOV 65 IS OBSOLETE P F
! SN UT02-1 F .01 24601 Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Date Enteced)

e Al ., .. e D I R TP T PR
2" e . . St > e s . PR Y e e . -

. . . . T et R B T T P
LA S S BN . ST ST "L PP U AU PUIL. PO S, ST PO S S, WL, UL S Vo, S, v U RO I VA VLY S A AT PO PPV S AP L. 1 WL WS WL T W e

U
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

In this research a name is defined to be an object that can be
associated with another object and has an equality operation
defined on it. Two functions are defined for a name; it can be
used both to provide access to the named object and as a place
holder for the named object. The assumed system model is a
loosely coupled, distributed system.

—r—

The research addresses this problem with: (1) a detailed analysi
of the naming problem and the nature of names themselves; (2) a
proposal for a set of mechanisms that addresses the problem
above, including the proposal of two new types of objects and the
mechanisms for their use; and (3) two examples of uses of the
model. The model consists of private views of shared, local
namespaces allowing shared use of names and supporting shared
responsibility for management of the namespace. In addition the
model provides for the acceptance and deletion of names in stagesi

The contributions of the research include an investigation into (e
the nature of names, an analysis of naming as a social process G
especially recognizing both the joint management of names by A
the users of those names and the fact that acceptance and AR
possibly deletion occur in degrees, and the proposal for a f;*»*’

..

mechanism to address these issues.

, Accession For ®

| NTIS GRraT ‘
| DTIC TAB -

;. Unanrounce~A
Jgstifica.

a
T‘Lﬁ

By

{ Availabi;:
! Ava .

AN

Distrlbut | -wn/

1Dist Sp rial

e e c———

tv Codes
wd/or

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

- vy v oy . » WY RSP I A M e “Schivie e vt i B Shan Sune SNt et D SRS i I 4

Distributed Name Management
by

Karen Rosin Sollins

Submitted to the
Department of Electrical Engincering and Computer Science
on February 14, 1985 in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

® Massachusetts Institute of Technology 1985

Massachusetts Institute of Technoiogy
Laboratory for Computer Science
Cambridge, Massachusctts 02139

..
............................

o S P, Sl N s Sete Andl Bt Snge TS L3 - ey it oh T AP AN AN AP AR AL A AT SN A S AP Y e S S S A St e Al At Sl g
P il Bt P Rt At il il 8 . Sote [P . . R . AT,
N -

.

-

-'\

)

»

This rescarch was support by the Defense Advanced Rescarch Projects Agency of
the Department of Defense and was monitored by the Office of Naval Research
under Contract Nos. N00014-75-C-0661 and N00014-83-K-0125.

- W o g . . -~ - L ST - . PRI - .'.-. h'.-'-'-.." - . - . - R P S . et T et
L O, "N, .'._".' WP Py \‘i' b Y. J L . &"vaL‘L‘NL‘QL PR VY VAT W by~ - et - - — . 5. 2 b4 e L) 2 A a 2

Al S S SRR I A e 4 LN 2 S Ran LA ™ g 0 ML I i S Sl e

Distributed Name Management

by
Karen Rosin Sollins

Submitted to the
Department of Electrical Engineering and Computer Science
on February 14, 1985 in partial fullillment of the requirements
for the Degree of Doctor of Philosophy

Abstract

The problem being addressed in this rescarch is the design of a naming facility
achicving the following goals. First, two functions on names must be supported:
accessing a named object, and acting as a place holder for the named object.
Sccond, it must be possible to share those names. lllird, communication of the
names as well as communication by use of the names must be possible. Finally,
feasibility of implementation is a goal. In this rescarch a name is defined to be an 7
object that can be associated with another object and has an equality operation
defined on it. Two functions are defined for a name; it can be usced both to provide
access to the named object and as a place holder for the named object. The assumed
system modecl is a looscely coupled, distributed system.

The research addresses this problem with: (1) a detailed analysis of the naming
problem and the nature of names themselves: (2) a proposal for a sct of mechanisms
that addresses the problem above, including the proposal of two new types of
objects and the mechanisms for their use; and (3) two examples of uses of the
model. The model consists of private views of shared, local namespaces allowing
shared use of names and supporting shared responsibility for management of the
namespace. In addition the model provides for the acceptance and,deletion of
names instages. - . 0 Jroiae oo Ll Tt i T .
The contributions of the rescarch include an investigation into the nature of names,
an analysis of naming as a social process especially recognizing both the joint
management of names by the users of those names and the fact that acceptance and
possibly deletion occur in degrees, and the proposal for a mechanism to address
these issues.

Key words: naming, distributed system, sharing, cooperation, software environment,
strong typing.

At et et S T s W T e e e .
. . B B . - - . .

- PR R S S T SR I S SR A S S R O e S IR S

W G TR IE S S T Tl Sk S W Wl SRR IS Wl TR SoJE A VAP Yl SLAY Wil VO VRl Sl el Gall Wy (S St e a Lo A A ada tal

l.

! Y ". RO A

Acknowledgments

I would not have succeeded in this rescarch project without the support, guidance,
and caring of a great many people:

Mike Soliins, my husband, who, more than anyone clse, supported, listened to, and
coaxed me throogh the many highs and lows ol such a project,

David Reed, my advisor, who, more than anyone clse, has showed me how and
encouraged me to think and question and has worked tirclessty with me through
many versions of explaining my idceas,

Peter Sollins, my son, who has come with mc through many emotional highs and
lows, always ready with a hug, a kiss, and a word of encouragement,

David Clark, a reader, who in friendship has put much more into this project than
can be asked of a reader and kept bringing me back to reality,

J C. R. Licklider, a rcader, who has shown me how to look at the world from new
perspectives and always with enthusiasm,

Deborah Lstrin and Sam Hsu, two special friends, who, in many long conversations,
have helped me through the trials and tribulations of being a graduate student while
maintaining some perspective on sclf and life,

Axel and Kathy Rosin and Susanna Bergtold, my parents and sister, who have
supported and encouraged me in things that they may believe they cannot
understand, but could with a good explanation,

The many members of the computer systems research groups, espccially Mark
Kosenstein for his code and support in the mail implementation, Larry Allen, Jerry
Saltzer, and John Romkey for technical discussions of my rescarch, the users of my
mail implementation, and the other members of the groups, who all have given me
their support and shared their sense of humor,

The women, other female students and staff members, especially Deborah Estrin,
Muriel Webber, Debby Fagin, and Toby Bloom, who have given me a better
understanding of myself and MIT and how we can all work together.

Thank you

Pttt o PR . SR e o e .
PRSP WNE SR WL PP WPRL SR W . DR R R R R M T VA P YR Y S W P

o Tav LV W W W T T T Y YL T T T T A e

R e T o T, Nt
ata aatalatala alalaals " alal il atalln" ol

PR
o .

R S il Tl)
B L)

G
-——

3
[Y

P
SV U SR PP T

I S
) PO

———y—"

v —— A e s a2t o e
R S e e S e, aneciins mane " LI T e A S A S RSN

For my husband Mike, to whom a great deal of credit goces for this,

with all my love

R T T e o . e P L
.) DR T T R A L AT sy e, P ‘- RIS . LIPGR .
- L A A A e o Qtw e e T P TS NS, S T W) IR i S S S =

Table of Contents

Chapter One: Introduction 11
1.1 The Issues 11
1.2 The Assumption of Federation 14
1.3 'The naming problem 17
1.4 Model for a Solution 19
1.5 Related Work 23
1.6 The Plan 27
Chapter Two: The Nature of Names 29
2.1 Introduction to the Problem 29
2.2 'The Definition of a Name 31
2.3 Aspects of Names 34
2.4 Aspccts of Human Naming 43
2.5 Additional Problems 49
2.6 Summary 54
Chapter Three: Sharing and Individuality: The Model, Part 1 57
3.1 Introduction 57
3.2 The Context 58
3.3 The Aggregate 65
3.4 Examples of Uses of Contexts and Aggregates 71

Chapter Four: Joint Management and Name Assignment: The Model, Part 11 77

4.1 Introduction 77 fj::"_:.'}:.':.f]
4.2 A Simplc Example 81 PO
4.3 Factors in Joint Management 83 ‘@
4.4 Parameterization of Joint Management 86 o]
4.5 A Sample of Choices 89 R
4.6 The Merging Problem 91 R
4.7 Summary and Review 94 T
Chapter Five: Implementation of Naming in an Flectronic Mail System 99) . 1{
5.1 Introduction 99 1
5.2 Electronic mail 99 f-'.j::'.ii-'.";:'}
5.3 The Implementation 106 .‘ s
7

.......................................
.............

ikl ~',‘-' v e ST R Ty VR ‘T_‘:(. 'l'“' -."-‘." A POt Tl e L m e ar— _._ A A i i 3 T - T LA “—"“‘T'—‘*T
5.4 Lessons from the Mail System 115
Chapter Six: Design of a Naming Facility for a Programming Support 119
Environment
6.1 Introduction 119
6.2 The Programming Support Environment 119
6.3 The Model 124
6.4 The Operations 128
6.5 Design of an Implementation 131
6.6 Comparisons and Conclusions 134
Chapter Seven: Conclusion 137 R
[
7.1 Reflection of the Ideas 137 C
7.2 Lessons and Future Research 142 L
7.3 Contributions 146 S
References 149 S . "
Appendix A: Operations in the General Model 155 o ﬁ
A.1 Opcrations on Contexts 155
A.2 Operations on Aggregates 156 ’j:,‘
Appendix B: Operations in the Mail Implementations 157 . o 1
B.1 Functions in User Interface 157
B.2 Opcerations on Aggregates in the Mail System 158 ‘j'f‘: L
B.3 Operations on Contexts in the Mail System 160 T
.. @
Appendix C: Operations in the Programming Support Environment 161 . _.;-;.j:;f
C.1 Operations on Contexts and Aggregates 161 -
C.2 Operations on Library Contexts 163 ROty
C.3 Operations on Template Aggregates 164 e A
I,
- @ 1
—_ . -«
8 1'.:::~:j::'_
)
DRI
o

Lo
.....

...................

Table of Figures

Figure 1-1: Aggregates containing private copies of a shared current
context

Figure 2-1: Examples of naming issucs

Figure 3-1: Depiction of a context

Figure 3-2: Depiction of an aggregate

Figure 3-3: Example of joint sclection of a name

Figure 4-1: An example of a state diagram of the transitions of context
entries

Figure 4-2: An cxample of a table for merging contexts

Figure 4-3: A state diagram for acceplance and deletion

Figure 5-1: Message with shared nicknames

Figure 5-2: Mcessage with mailbox addresses for names

Figure 5-3: Processes in the mail system

Figure 5-4: The list of aggregates

Figure 5-5: Displaying an aggregate

Figure 5-6: Possible states and transitions for entries a context

Figure 5-7: State table for merging two contexts

Figure 6-1: A rcpresentation of a context

T TR T T TS

21

3
60
67
73
79

80

91
101
101
108
109
109
114
114
131

Chapter One

Introduction

1.1 The Issues

Names arc a critical part of communication, both among humans and between
humans and computers. In order to communicate with another human, the human
must be able to name objects and actions in such a way that both humans
understand the names. Analogously, in order to communicate with a computer, the
human must be able to name operations and objects in a way meaningful to both the
human and the computer. Therefore, what can be named and how is a central issuc

in designing a computer system uscful to humans,

There are three concepts that form the basis of this rescarch project. The first of
these ideas is that many, perhaps most, computer environments today consist of
federations of fairly autonomous computers connected by networks and internets’ .
Such a federation leads to issues of independence in dehning names, reliability of

service, replication of data, redundancy, and many others.

The second idea is that, in addition to providing excellent storage for information
and arithmetic and decision-muking capabilitics, computer systems provide a
medium of communication and cooperation both between people and computers
and among people. Such communication and cooperation may be achieved through
sending and receiving electronic messages, sharing and working within a large,
possibly distributed, database managemient system, coopcerative text or program

preparation, or a number of other activities.

An internct is a network of networks, allowing for communication across network boundaries.,

1

AT I

U Ul O W U

r

-4
*

_1
[]

1
.o
’ J

A
N T

P |

- - ey ~ T T T s
Lo -0 aan o ;UNAL ma e ca A Sias dhes e airer Sen e SRR e Bet te Mate et Sl Al Lol e 4 v k -

begin to recognize in different ways from cach other that the problems are not as

simple as Lampson said.

This report will now review bricfly those particular projects that have strongly
influenced this rescarch and what those influences have been. Beginning with
Saltzer's work on naming [42], there are two ideas that have been taken from that.
The first s the need for tocal and - dular namespaces. Saltzer provides a detailed

and carelul analysis of why both o ity and modularity are important.

I'he second idea inherited from Satizer, reinforced by the work of Birrell ¢t al. on
Girapevine [5], Oppen and Dalal on Clearinghouse [36], and Lantz and Edighoffer
on UDS[28], is that a naming facility can and should be universal. Naming
problems and facilities cannot be split along the boundaries of the types of objects
being named. Saltzer presents his model and then applics it to both a file system
and memory management. The Grapevine experience was that their facility was
originally used for naming mail recipients but the same naming facility could be and
was used by the matl service itseli to name and locate the services it needed to
operate. In addition, other communities had other plans for it as a naming scrvice.
Both Clearinghouse and UDS were designed initially as universal naming services,

in recognition that such universality was beneficial and efficient. This idea of

universality was also reinforced by Saltzer [44] and Shoch [46) in which they

distinguish namies based on the objects being named. These papers only reinforced SRR
the idea that such cfforts were creating artificial and unnecessary boundarics in L

naming.

Multics [37] has contributed several ideas to this work. There are two important

- ' a
influences. The first is in the structure of an aggregate. As mentioned, this is based .
on the idea of searca rules and a working directory. Of course, other operating S
systems have incorporated these ideas as well, but it was Multics with which the R
°
.4

25

e AT R LT R FS T T R L P . Lt e T
et mtatat atmtat et et Lt Stk ad et al atataSal kol ek P PP PO i ﬂ

v - T n R TITpR—_—————— Paficadiiradhac e Bafiuin i i Aahe it Sute linte Sl St

rescarch related to the topic of that chapter. ‘Therefore, what is traditionally a

sceetion on related works in a thesis will be distributed throughout this thesis,

The philosopher Quine [39] provides a masterful study of the relationships between
names, the objects being named and the meanings of the names. Much can be
tearned much that is direetly applicable 1o naming facilitics that impose the thinking
ol the designers and builders of such a facility on its users. Naming forms the basis
ol thinking and communication. In a more practical sense, types or styles of names
are not limiated to types of objects being named. In particular, in the work here,
Quinc’s idea of general names has been simplified and transformed into the idea of

generic names.,

Carrolt of IBM as part of his work on names and naming has done sociological
studies of human naming patterns both in conversation [54,7] and in
communicating with computer systems [6). From Carroll's work, four important
lessons can be learned. First, in communication between two people, there is a form
of negotiating that takes place in proposing and accepting names that will be used
by the two in the future. This idea of cooperative name management will be
addressed in detail in Chapter 4. Second, Carroll teaches that naming is done on the

basis of conversations, topics of mutual interest, and, in addition, based on the

participants involved. It should be noted that conversations cannot necessarily be AR

organized in a hicrarchical fashion, but humans have mechanisms for distinguishing

them without such hicrarchical structures. Third, the individual, in bringing past : ¢ N
experiences to a conversation, plays an important role in determining the names that ‘
will be chosen through those personal experiences. Fourth, Carroll re-enforces the -
concept learned from Quine that naming is universal. Objects are not necessarily ° 1
distinguished by the types of names they have, but rather use the same naming]
mechanisms for naming all sorts of objects. Much of what can be learned from =

Quinc and Carroll has not been built into computer systems, although many systems .

24

N W e e . T C T - . S R T A A R O I O R .
I VPO A Y Sl VST VR Shill VoAl Yt Vel Wl We 4 el PP MPL, WU PE. W W WL AP W W W WY WP S W W W W Y Y Wy P -l

B S e Cam mten] A e e A ASEAUEC SSRGS Med b Svint v
PRI A PULAN R - A

modifications of the ideas of working directory and scarch rules used in many file
systems. This is onc of the aspects of the work of others that is discussed in the next

section,

1.5 Related Work

According to Lampson [26]:

Basically, there are only two ways [that] are known ol doing naming.
One way is to use hierarchical names, where you work your way down
some structure like a tree-structured directory system, or an arrangement
of nested records. 11 you apply an appropriate discipline of not generating
two subnames that arc the same at any level, then you have an
unambiguous naming scheme. This is inconvenient, because you have to
give this long structured name. ‘The other method is to have some more-
or-less aimless collection of scopes that you wander through, using
something that is a scarch path or a scope inheritance rule or call it what
you will. "This has the advantage that if you're tucky, it will be convenient
and give you what you want, and the disadvantage that you'll never really
be quite sure of what it is you're going to get. ' You can basically pay your
money and take your choice. Perhaps it's unfortunate that there's not any
systematic way to decide exactly what scarch rule will be followed.
There's not much uniformity either in the specifying of scarch rules or in
the arrangement of hicrarchical naming systems, but there are really only
those two basic ideas. The whole subject, in my opinion, is much simpler
than it’s generally made out to be,

Fortunately for the users of computer systems, the set of solutions to naming
problems is much richer than Lampson suggests. Exploration of various problems
has procecded in many of the subficlds of computer science. In fact so much has
been done, in many cases as a side effect of other research and development on
other problems, that this report can only touch on a sampling of the work that has
been done. The related research will be addressed in a non-traditional fashion in
this thesis. This chapter will consider those works that have direct influence on this

rescarch. In addition, in each succeeding chapter, there will be a discussion of other

23

P LR T ST L T . LSRN . et e e e e T .
LR LAY WLl VST SR YA A W ¢ DRI W YROY S SRSt WPy NREE NPT WNDE NI Guv U I e S Y

PP R LI IR SR R S DN PN I AL PSPy

Ty L yLyTTYTYUYo YTy T

PR T WY W S P 4

— ZEN SIS S 0 A M ate Shan e Bdn. v I e Andih Ses Ui e " (i S Ry Shacaneact i et~ T W W W T T —_-

be shared. A user may include any context in which he or she is a participant in the

environment of an aggregate that docs not have that context as its current context,

Figure 1-1 is provided as a visualization of a shared context and two aggregates
representing individuals sharing it In that figure, Sandy and Randy are identifying
shapes. They have labelled one shape "pear” and now Sandy is proposing o name
the second "horse’s head.” Sandy was recently on a farm, so Frm animal shapes
come o mind. With Sandy’s proposal, the name becomes a candidate, 1f Randy
agrees, the name "horse’s head™ will be accepted in their shared context reflecting

the naming of these shapes.

The figure represents this situation as follows. Sandy and Randy cach have an
aggregate. Each aggregate contains a copy of the context that they share and cach
has a private environment. Sandy’s aggregate has (wo rules in its environment and
Randy’s has one. The first rule in Sandy’s environment contains only the current
context of the aggregate known as "farm”. The other rules arc not depicted in the
figure. ‘The copies of the shared context need not be, and arc not in this case, in
synchrony. Both copics contain the fact that Sandy and Randy are the participants
sharing this context. The fact that agreement has been reached about the name
assignment for "pear” is reflected in the letter "a” in the entry, representing an entry

accepted into the context. The entry for "horse’s head” is being proposed by Sandy

and therefore is in the "candidate™ state represented by the letter "c¢”. The RN

information about this candidate entry has not yet propagated to Randy’s copy of ° 1
the context and therefore does not appear in Randy’s copy of the shared context. -.,1
The reader should be aware that although the aggregate mechanism is based on the RENKY |

.o]

idea of human conversation, it will have a more gencral use. The attempt here is to

)
.
D

model human behavior, not to provide any sort of explanation for how humans

bechave. The concepts of current context and aggregatc arc extensions and

P
P
D ol i

22

T T T P e Ve R U T R R T .
I e e e e e e e e e, O S I SR P A R < N Tt et e e e
PREMAF S SRR R AR AR UL SPRIPURCAI N TP A SRR TP S I AT LAY AP S L P Sl Sl Yl Vel TOI SO W BT Sl Sl Sl Wl Sot oy

LG Wl VAT W

{farm)

envi- €nvi-
tonment ronment
- 7} pear I a l o~
T
pear la | / | | l | | l rent
curr
horse's
head lc l_ / | | ‘ I l context
current . ‘ o _— — ———l Sandy
context l l | Randy
Sandy |_ P
Randy P _— - O

..like a
horse's head

—

)

/N
/\ Randy S

Sandy

Figure 1-1:Aggregates containing private copics of a shared current context

21

R T NPT TSN S e e R A T
P SR RPN A TP AP LI CAP LI ©. W . IS Y

B AR R AR
PPN PPV R R VAP W R

| aan v Seen S e g SodEE Sy M RS SeviE vl U S M- MMM Aty JONl RN Nk JRAI- Retd asth dULani S il Suat vl SE il e Lt T

ettt

-

A context is a shared object and therefore has two further properties, both related to
the fact that the most basic operations on contexts are name assignment and
tanslation. First, a context contains a model of the fact that the associations
between names and the objects they are naming may occur by degrees. For
example, once a name has been sclected, more uses of it will probably make it more
casily understood. With disuse a name may be {orgotten. In contexts, this is
modclled as a series of states. Chapter 4 addresses this sct of issucs in detiel. The
linal property of contexts is a sct of participants, some representation ol those

sharing responsibility for a context or namespace. ‘This information is needed for

two reasons. First, identification of the context may include some mceans of

identifying the participants. This a reflection ol a human pattern of identifying
subject matter, by including recognition of who is involved. The sccond reason is
that different participants may have different roles in the selection of names. Again
this will be discussed in Chapter 4. Thus, in addition to the actual translations
between names and objects, a context also contains some means ol identifying

participants and a representation of the states of translations.

The other mechanism proposed here is the aggregate, the individuals naming
window onto the world. Names can be assigned and used only through aggregates.
An aggregate has two parts, the current context and the environment. I'he aggregate
itself is not shared, although its current context is shared. When two people
communicate, there is a small sct of names that they use regutarly and to which they
may add new names needed in that conversation; it is this current conteat that they
sharc. They each also have a pool of other contexts on which to draw. These pools
may be different for cach participant in the conversation. ‘The pools, which are
called their environments, consist of collections of contexts, which may or may not
be partially ordered, but which are used to translate names not in the current

context. The current context is shared by the participants. Other contexts may also

20

LR WU AL S LTS ST VU Wiotr S e s PP PPN L I G . O A S A, Oe.

L aneh awd s ek e oo adal L ANt el Sl gl et

T — W ————— v

mechanisms, Whatever joint understanding exists can only be defined by the

participants in the understanding,

The problem being addressed in the model in the next section is to mirror people
using names joinily to identify and use objects. Namces can be understood better by
studying both their inherent characteristics and their uses. People using names can
be understood better by recognizing the various aspects of human naming, both
characteristics and uscs. And finally, the joint naming that people do can be better
understood by recognizing that it is a form of communication and sharing and that a
structured negotiation must take place in order to reach agreement and allow for

communication and sharing,

1.4 Modecl for a Solution

The previous sections presented an assumption of federation and the problem arcas
of communication and human naming. The solution in this rescarch is based on
defining two new types of objects, contexts and aggregates. Aggregates are

composcd of contexts and, therefore, will be considered later.

The basis for this proposal is a simple type of object called a context. A context
translates namcs into cither objects or other names and is the model for a namespace

in this rescarch. A name is an object assigned to another object within a namespace

or context that allows the user either to use the name as a place holder for the .
named object in the context or to access the named object through the context. In
some cases, a name will be translated into another name less meaningful to or less o
casily used by the user of the original name. Further translation in the same or :

another context may then be requested. In the remaining cases, the user or program

will use the resulting translation as is. Whether further translation is needed or not, X
the decision is not made within the context but by the client, whether user or -
program, requesting the translation. ~ 2 -
19 T
ERSAEN
RIS
-0

PR ._", - ..-',_" .".- R ._".>"4_". L P YL) Nt e L L

e . PO L T I S IR LU S S R T
RO VAR PSP RE S MR WAL L S P S G S WP Sl Sl Sl SO TR WVE T WL T S WA TR VWL AR . e

— ———— r — RO St -l MM St e S S ML A A A N AN e Sl

The nature of names will be studied in order 1o understand both the inherent
characteristics of them and the uses of names. This rescarch identifies five
characteristics of namces. All have an impact on use or understanding of names.
Three of the characteristics reflect roles in naming: who assigns names, who resolves
them, and who uses them. These three propertics of names determine the
namespace from which names are chosen, within which they are associated and
therefore can be resolved, and within which they will be used.? ‘The other two
propertics of names identify the degree ol ambiguity or unigueness of a particular
name and its degree of meaningfulness. Name, as defined in this rescarch, have two
basic functions. First, they provide access to the named objects; and, second, they

can be used as place holders for the objects.

Understanding the nature of names and naming is closely related to recognizing and
identifying the aspects of how users or people name. Fight obscrvations about
human naming have been identificed in Scction 1.1, Various of those cight aspects of
nanming can be found in various computer based naming facilities, but no single
facility allows for all of them. Naming in computer systems has generally been more

restrictive for humans than direct interpersonal communication allows.

Joint naming implies two subproblems. The first is that communication using
names must be supported, requiring sharing an understanding of names. The
sccond subproblem is that negotiation must take place in order to reach an
understanding about what is to be shared. Negotiation may also involve acceptance
of numes by degrees or stages. Because federation is an underlying assumption,

dependency on an external decision maker cannot be built into the support

2N(mmspace is a general term for an object that remembers the association between a name and an
object and provides translation between names and objects. Chapter 2 investigates the relationship
between names and namespaces further and Chapter 3 presents the formal model, called a context, of
a namespace proposed in this rescarch.

18

ad

SRS

4

DA S R
Lo

MR P

DR
LR T

Y
&)

e e e T PR P e T, e T IN e P e - Sttt
..... SN APS E SNG D AP R G S S S L LA AP AP RPNV WP WA P W W T WS D .

Compare bricfly the human situation with the assumed model of federation. There
are many similaritics. Humans will often think and function independently and
then discuss or operate cooperatively. An individual may develop ideas privately
before sharing them, Then a group may form to address them, Humans certainly
function both without joint initialization and in the face of possibly intermittent
communication. Humans, beginning with some basic shared means of
communicating (which may be as basic as facial and hand expressions), negotiate
further means of communication. They also generally use names without requiring
or even wanting access to the named entity. In fact, part of the function of a name is
as a place holder. ftis the sharing and joint management of names that this rescarch

is addressing.

The following scction will briefly present a model for a set of mechanisms that
adhcere to the eight observations listed above. The model will be addressed further

in Chapter 3 and succeeding chapters.

1.3 The naming problem

The problem in naming that this research is addressing can be stated simply and
then subdivided into three subproblems. Each of these in turn can be subdivided

again. This structure of the problem will be examined in this section.

Names allow the users of objects to identify and access those objects jointly.
Although joint naming is not always usecd, the fact that naming is used frequently
for communication among users must be supported. The naming problem is that
currently available naming facilitics in computers do not support joint naming
among people adequatcly, in many cases because the full extent of the problem has
not been recognized. In addition, feasibility of implementation must also be a goal
of the design of a naming facility. Three words were highlighted because they
identify the three subproblems that are addressed in this research.
17

.

TAERERERERE N
I3 I I I

LA

R T ww Tl e e e e su

some prior arrangement was made. Since the two systems were initialized and
operating independently, they may have overlapping sets of identifiers in use. il a
merged set of names is not to have duplicates, it is possible that names must be
changed and future agreement must be coordinated. The lact that particular
namespaces are assumed to contain only unigue names may have far-rcaching
consequences il this assumption has been built into application subsystems and
programs as well as the operating systems. ‘The problem may be especially insidious
il the merger is occurring between (wo distributed systems of the same type, where
such dependencics may be well hidden from the user. This issue was addressed
both in SNA[3] where the solution was to build a wall between two such
cooperating, but independent networks, and by Rom [41] who proposed algorithms

for merging namespaces of networks at the time of merging,

‘The sccond result of assuming federation is an unpredicatable lack of availability of
participants in the federation. For naming, names needing non-local resolution may
not always be resolvable. Any functions which are to be usable whenever a local
node is available must not be dependent on auxiliary remote services that might not
be available. For instance, if a remote printing scrvice should be available to the
local machine whenever the printing server and the communications medium are
available, then uaccessing the printing server must not be dependent on a remote
name or authentication service. This assumption may have far-reaching effects, for
instance in compiling code with remote procedure calls, using a distributed database
management system, sending and recciving mail and many other distributed
applications. Such applications may be designed on the assumption that certain
auxiliary information is available, although it is possible to perform certain functions
without that information. Needless to say, when the time comes to perform the
remote procedure call or access the non-local data, the non-local site involved must

be accessible.

16

AL AN A S D S S SR P N RPN S -

PG NLY G S AP G W G ST S AP O, U S

. e ane B me smce e ma 'y o RS s e S e At St bt Sl S Sl ST S T

the network by simply not accepting messages, that is possible. I that computer
provides a service Lo the participants in the network, they must understand that such
a service will not always be available. On the other hand, federation provides the
common ground for communication (such as agreement about protocols and
services 1o be available) should it be desired. Federation includes autonomous
behavior, a relatively casy problem 1o address, while allowing for unplanned
interconnection and cooperation as needed. Allowing for cooperation is more
difficult to address, and frequently ignored or disallowed. 'The loose coupling

labelled federation is taken as the system model in this rescarch.

Federation brings with it the fact that communication may only be available on an
irrcgular and unpredictable basis, both because the humans involved may choose it
and because communication links are physically unavailable. For example, two
networks may be created independently and only later connected. The connection
may come and go, or particular machincs may be available only at certain times.
These irrcgular communication patterns have several implications. First, uniform
agreement cannot be assumed, alfecting naming. In general, most naming schemes
today assume that there will be an agrecment on a naming service. In the large
Arpanct community, the Network Information Center (NIC){15] provides that
service, although there is a plan for distributing this responsibility to some extent to
address this problem of a central scrvice [31]. The creators of Grapevine [5] and
Clearinghouse [36] distributed this responsibility among managers or administrators,
but still require a local external service to register names. Ncither Grapevine nor
Clearinghouse allows for graceful merging of two of their environments when

namespaces overlap.

There are two implications of federations; their cffects on naming arec worth noting
at this point. First, the assumption of independent initialization implies that once

two systems have joined in a federation, unique identifiers are not available unless

15

1.2 The Assumption of IF'ederation

Of the three ideas mentioned in Scction 1.1, federation is an underlying assumption
of this rescarch, while the concepts of communication and cooperation and the
concept of more human-like naming are goals to be achieved. Since computational
[ederation is an assumption, in addition to defining it, the implications of federation
on naming and name management must be carcfully considered. A conclusion will
be that federation complements concepts of communication and cooperation and
human-like naming. ‘The goals define a large problem arca, that must be limited in
order to make this solution feasible. These limitations will be discussed, followed by

a brief description of the proposed mechanisms that comprise the solution.

The direction in which computer systems have been moving is toward a multiplicity
ol machincs interconnected by networks providing a communication medium. The
concerns of privacy and independence from other uscrs have always been issues
among computer administrators and users, but the nature of those concerns has
changed somewhat as smaller cheaper computers have become available. [n many
cases, administrators purchase such computers and put them into service in

isolation. At some later time, the administrators decide to connect the computers

under their management. From here, the collection may continuc to grow with little .

control or consensus among the participants in such a "system". A compuler is
autonomous if all the activitics on it are isolated from the activities of any other; for
all intents and purposes, it is not connected to any other computer. Many
administrators have pursued this option in order to escape large time-sharing
systems. A federation is a loose coupling of computers to allow some degree of
cooperation, while at thc same time preserving a degree of autonomy. In a
federation, there is some agreement on behavior and protocols to be utilized, but the
barriers apparent in the isolated machine are still available to anyone who wants to

enforce them. If the administrator or user wants to disconnect the computer from

14

sl ,au ;.-;i-_'.'-.'-l;;l:' _'.';;, e e . RS e e e e e

M AFAL N & g e i Se R St e S e era oy pERC L AR AN AR STLANASE I At

gencric names to label classes of objects. These generic names may be :
labels or descriptions. In fact, humans ofien use combinations of generic

_ names and descriptive names “ order to narrow the sct of objects that are _q
- identified.
;:ﬁ 6. Manifest meaning of names: The words used by fiumans for names have
meanings constrained by human languages. These mceanings are EN
understood by other humans as well, <

7. Usability of names: /Humans arc able rapidly to define or redefine names
and shift contexts on the basis of conversational cues. They also have
mechanisms for disambiguating names, such as querying the source of a -
name for further information. ¢

P g m aen

8. Unification: Humans often use various naming schemes, not limiting the
naming of objects 1o special schemes based solely on the type of the object.

Rather, the various schemes are generally applicable. -
The goal of this work is to investigate a framework for a naming facility that allows
for communication, cooperation, and more human-like naming bascd on the list of : ;
obscrvations above. Part of this investigation is a study of those aspects of naming f‘
that arc common to many or all applications and thosc aspects that are not, and
therefore must be application specific.
.
The underlying model of a federation of computers is discussed in Section 1.2, ‘“‘
followed by a bricf investigation of the problem being posed in this research in :
Section 1.3. A bricf introduction to the proposcd framework for a naming facility is
contained in Section 1.4. Section 1.5 discusses related work, first considering some !

philosophical, linguistic and sociological work that has influenced this research. It ij'
then presents a representative sample of work in computer science that has
investigated the ideas that are being brought together in this work. Finally, the last
section of this chapter describes how the investigation will proceed through the

remainder of the thesis.

13

K%

-t et &7 a ~

. . s, S e PR S .
o et P T T T I T T TP
RS B AU LN G LY. 4GP Sy Sy Fe.FUFAiTRre.Te | FIPRY WP YT W W ¥

‘The third idea is that imitating human naming patterns in a naming facility will lead
o a more useful naming facility. Observaiions about human naming are considered
in this rescarch for two reasons. First, humans are autonomous beings forming and
reforming lederations in which they effectively communicate and cooperate with
cach other. Sccond, computer systems designers and builders have created naming
facilities that are frequently adequate for computer use, but often not for human
use. 1t should be noted that most of these observations can be found separately as
goals of various naming facilitics, although they have not been assembled o form
the goals ol a single naming facility. ‘The observations arc:
1. Communication: Names are part of the basis for communication.

Therefore sets of names used by individuals should be sharable, reflecting
common interests and communication patlerns.

2. Individuality: Part of the social process of naming is that each individual
brings personal cxperiences and unique decision making to the process.
Those experiences may be shared with others, but no two people will have
had exactly the same set of experiences, and no two people will make
exactly the same choices at all limes.

3. Multiplicity of names:

- Different people use the same name for different things.
- Different people use different names for the same thing.
- A single user uses different names for the same thing.

- A single user uses the same name for different things in different
situations or at different times.

4. Locality of names: A person uses a small set of local names to reflect his
or her focus of interest.

5. Flexibility of usage of names: //umans use several sorts of names. For

example, names are often descriptive. In addition, descriptions that have
not been previously chosen as names may be used. Humans also use

12

ST e PO LR LN TR TR WU WU W U R R A Lo e T o it IR v . g —— - Py

author was familiar. ‘The second is the observation that even within the restrictions
on segment names there are attempts o allow names to reflect meanings and as
much as possible reflect names that might be used outside the system. Again this
can be seen repeatedlty in other operating systems as well. Directories have certain

meanings. Component names have meanings. Both reflect external names as much

as possible. In addition, as will be seen later, the Multics known segment table

provides per process local naming and that is a Targe component of this work.

There are two final influences that bear mentioning here. The first is Lindsay's set
of goals in his work on the catalog and object naming in R* [29]. Those goals have
much in common with the carlicr observations about human naming, although
Lindsay did not emphasize communication and sharing as is done here. The final
influence is a negative one, and to some extent work is progressing in an attempt to
address it. The situation is the one found in the Arpanct, where a global,

hicrarchical namespace with a central administration is the only choice. At the level

ol internet addresses there is a hicrarchy administered by the NIC[15). A hierarchy
is convenient but it does not reflect reality. Many hosts arc on several networks or
subnets and the structure of the internet is not hicrarchical. At the level of naming
hosts and users, work at moving away from a flat, global namespace again centrally .
managed by the NIC is progressing. The work of Mockapetris [31, 32] scts the
standard to be a global hicrarchical structure with a hierarchical administration.
This addresses the problems of a flat namespace and a central authority, but does
not address the fact that the administrative entitics that will manage such a
namespace do not form a hierarchy. In addition, the administrative structure will be
reflected in the names, despite the fact that this has little to do with the names that

people might want to use.

As mentioned previously, there is a great deal of work related to naming. What has

been provided here is a summary of those works that had the strongest influence on

26

UL LIPS TP AP N Dol Thlt S Sl Ui Seds W TR0 G U

¢ Il 7‘ v,

DAl
2 e,

f"rvrr<‘-'
. e

this rescarch as it developed. ‘Throughont the remainder of the thesis a sampling of
other work will be noted where relevant. What is important to note here is that
although the influence of others can be found in many aspects of this work, none

has pulled the set ol ideas together into one place.

1.6 The Plan

As part ol a rescarch project, it is necessary to identify the methodology used as a
basis for the rescarch. There are three parts o this methodology: (1) identification
of the problem, (2) the tools used both in analyzing the problem and in providing a
solution, and (3) testing the results for adequacy. The problem itself is recognizable
as a problem because although humans have a very rich and flexible naming
capability, computer systems do not and the problem becomes accentuated in a
federated computing facility. The problem can best be explained as is donc in
Chapter 2 by comparison with human naming. Three tools arc used in addressing
the problem. The first is to examine human behavior, to gain an understanding of
one approach to solving the problem. The sccond is to design a model. By nature,
the model can only be an approximation because total human behavior is quite
complex and frequently unpredictable, especially in new situations. The third tool
is an implementation. The implementation of the model allows for study of the
feasibility of the model and cxamination of the behavior of the model. The final
part of the methodology of a rescarch project is verification of adequacy of the
results. First, the value of the issues can only be judged by the audience, although
the fact that the work is novel can be argued by reviewing other work in the ficld.
Second, implementability must be evaluated. This can be achieved most directly by
an implementation, or if not, a design indicating the details needed for an
implementation. Such an argument leaves the final decision to the audicence again,
The final measure that one can apply to a model for a solution is simplicity. This

determination must also be left to the audience.

27

B N N O T ———— P A AP A S S R

This report investigates the problems of naming a large variety of objects in a T
lederated world of computational resources cooperatively among groups of humans -
in such a way as to mirror as best possible the naming that the humans would do

among themselves without the medium of computers. Returning (o the analysis off

the problem in Section 1.3, it is investigated in depth in Chapter 2, including
definitions of the problem itself, as well the definition of the term "name™ as it is
used in this rescarch, That discussion is also concerned with the general issues of
naming and how humans use names, ‘The set of observations is examined in more
depth than in this chapter, complemented by @ study of attributes and functions of o
names. Chapters 3 and 4 together present a model for a naming facility. Chapter

3 defines and discusses contexts and aggregates in detail, followed by a discussion of

joint management and name assignment in Chapter 4. Chapters 5 and 6 discuss C
mmplementations in two domains, in order to verify both that the problems
presented are real and that the recommended framework can be used o build a
naming facility in the two domains. Chapter 5 discusses an implementation in an
clectronic mail system and Chapter 6 presents a design for an implementation in a
programming support environment. The thesis concludes in Chapter 7 with a
review of what has been developed pointing to further rescarch to be done as well.

It concludes with a discussion of the contributions of this research.

This thesis addresses a large collection of issues surrounding naming and as such is

an attempt to bring some order to that arca. It presents a model, used in designing

implementations, but neither the model nor the designs is an end, but rather they e
are a beginning. This rescarch is a step forward in providing a more usable ‘
cnvironment for clients of computer systems by improving the naming facilities and

thereby the operating systems on those computers. -0 ~

28

Chapter Two

The Nature of Names

2.1 Introduction to the Problem

‘The problem being addressed in this rescarch is how (o design a naming facility
under the assumption of a federated system and achieving the foltowing goals:

- support of names as defined below,
- provision of sharing and communication of and by use of those names,

- feasibility of implementing such a naming facility.

Federation provides benefits over both centralized computing facilities and
decentralized but more tightly coupled distributed computing facilitics. It both
allows for a local tolerance to partial failures elsewhere and supports Yocal isolation
if that is desired. Continued operation in the face of separation due to remote
failures or the choice of isolation require local functionality. Fnough information
and processing ability must be available to allow for the continuation of local
operations, such as accessing local objects using local names for them. In addition,
creation of new local names for local objects should be possible, without the need to
access a remote name server or administrator. Of course, for those activities that
require remote access, such as rcaching agreement with remote sites on a shared
name for something, one must have access to the remote participants, and such
activitics must await reconnection. This line of reasoning lcads to the conclusion
that local naming and name management must occur in order to benefit from

federation.

29

T T

Humans provide a good paradigm for studying cooperative naming in a federation,

because they jointly define and use names as they are described in this rescarch. In
addition, they form federations with local facilities for name management within
cach person’s mind, and with no sharing exceptin the form ol the information that
Nows through vartous media of communication between them. ‘Thercfore,
frequently throughout this rescarch humans and human naming are used as
cxamples both for understanding names and naming and also for where problems

may continue to exist.

‘This chapter analyzes in depth the problem as identified above, by examining
various aspects of names and naming. ‘The first step in this analysis is to provide an
operational definition of names. The definition is simple, in order o capture the
essence of naming. Others have assumed more complex definitions, often in order
to provide additional functionality that may be needed in particular applications.
The definition is followed by discussions of aspects of names and obscrvations about
how names are used. The investigation of aspects of names provides the reader with
a deeper understanding of names themsclves, while the observations about uscs
cxplore patterns of cooperative usage within the definition of names. In addition, as
part of the investigation of names this chapter presents a list of other potential uscs
for names to be found in other naming facilities, but excluded from this one because
they are not consistent with the definition of names choscen here. Implementability
and consideration of those problems found in other similar facilities that are not part

of naming as defined here are Ieft to later chapters of this document.

Figure 2-1 provides a simple example of a number of the issues to be addressed
here. The Green family consists of five members, three of whom are children. The
two older children, named Samantha and Samuel, may be given the same nickname
"Samimy™” at times. The baby, Sandy, cannot pronounce the names “Samantha™ and
"Samuel” given to the older children by their parents. This example will be used in

a number of cascs to illustrate points in the remainder of this chapter.
30

. ‘e .

BRI

T, .

PR SRPRET WA Yl o P TRAY W b M TR | P SR S WA Wi Yo 1 o — o 3B e S = S]

D
o]
R
R
o 1

:
.
P T

e
And.

A
g
atbinld.

s

TP —— e —— b s i i A ’ -

i. The Green Family

Meet our twins, Samantha
and Samuel and
baby, Sandy.

h
(’_”“) (—““_J
O
)
Mom Pop Samantha Samuel Sandy
i

Figure 2-1:Examples of naming issues

2.2 The Definition of a4 Name

Definition: A name is an object that can be associated with another object and has an

equality operation that is reflexive, transitive, and symmetric. It has two uses. First, it
may provide access to the object with which it has been associated. Second, it may act
as a place holder for the object with which it has been associated.

)
Association of a name with an object is a function of the namespace within which
the name is defined. A name can be defined in different ways in different

J

- 31

)

. St e

PR

e Lt
bl ot

PETREOPERE T WA VLI PP S S Sl ST UL WP Sl Sl Sl WL YO | L VO ST WK YUY U L T T RSN .

L.

y K i P
PR P L
R I I L
b ettt st

WP IrT

LT L Y AT b e e i A SN P P it e e A AN R A AR S Te. .Y

namespaces, resulting in accessing different objects by use of the name. ‘The
cquality operation in the definition of a name is an operation on names, wherceas
assignment or the act of associating a name with an object is an operation on a
namespace. Therefore the function of providing access (0 a named object is also a
function of the namespace. In order to understand the definition of a name better,
the two uses of names are investigated separately. This section concludes with a
discussion of the function that is the reverse of accessing an object, an additional

possible function of a naming facitity, although not a function of names themselves.

Access

The function that is most commonly considered in naming is the resolution of
namcs. The desired response must be recognized when a user requests that a name
be resolved in a particular namespace. First, in most naming facilitics it is assumed
that there must be a single response in most situations in order that the name be
resolved correctly and that it be considered a valid name. This is certainly not true
when humans doing the naming. Consider the baby Sandy asking "Thammy" for
help. After doing it once, the child learns that several people may respond despite
that fact that only onc person may have been intended. Humans have developed
many techniques for disambiguating, when that is important. But they also may
take advantage of the ambiguity. The point here is that a single or a particular
resolution is not always what is most uscful. In this rescarch, the possibility of
multiple resolutions for a single name is not excluded. In cases where multiple
resolutions occur and a single one is needed, further resolution or sclection using

non-naming operations will be required.

A sccond aspect of name resolution is the actual translation of a name. ‘There are
two sorts of entities that can be returned to the user of the name. The first is an
object or what appears to be an object to the user. In this case, the user does

somcthing with the object such as hand it to a service that will print it, copy it,

3

PYLPY VA Yl Gy Sty e P ’ PP P LIPS S) e o P W

———————— g e e e O e~ S~y

modify it or perform seme other operation with i, The other alternative is that
another name is returned to the user ol the name, Not all systems allow for this.
Those that provide linking, aliasing, or other forms of synonyms may be prepared
for the return of names instead of objects in at feast some situations. The names are
simply a form of indircction. In their most general form, such translations provide
another name in another namespace. A common form of this can be found in the
telephone book. A name is resolved o a telephone number, not the person; further
resolution is needed. ‘The telephone number is a name that the elephone system
understands. To review, the naming lacility will allow for one or more responses to
a request for name resolution and those responses may be cither objects or other

names, that may or may not need further resolution.

Place holder

The other use of a name is as a place holder for an object or indirect reference.
Names provide one of the same [acilitics in communication that pronouns do in
grammar. They allow for identifying something without actually having the object
in question, The situations in which such a facility is uscful arc those in which
containment of the object is impractical or impossible. For example, the object may
not yet exist or when the time comes, one of several objects will be chosen by some
other selection criteria to be used as well. The flexibility of delaying the binding of
name to object may also be important. In addition names allow for multiple,
physically disparate references to the same object. If names did not exist, it might
be necessary to have two copics of the object, making sharing impossible. Thus,
names serve an important function of standing in for the objects they are naming, to

both provide sharing and allow for delayed binding,

l'inding a nickname
Consider a situation in which one of the parents sces one of the twins doing

something dangerous. The parent says, "Samantha, no, Samuel, watch out!” "The

33

LSPRRSR

e m e e e P L P . -
<. PO IR A . et e e Ly s S, . N
AP LIPS AP VLA S VLl Sl Sl i S ALY I U U SN el atale bal e dmd o B e e e B e Aa s S . o w s . ot

PRy

ok

BAE "Wae e Ban e Jnen Janm 2 I Aua sase aeae Swen Semnd A} T— " g Pamar — —— " ACad T

parcent is scarching through the set of names relevant in that context to match the
person being warned. This operation s the reverse of accessing an object given its
name. In this case, a name is needed for an object. The same issues are relevant o
this "untranslate” function as to the access or "translate” function, I nltiple
names have been assigned to the object, as with a name being assigned to several
objects, it is possible that one will need o be selected. The naming facility cannot
know which onc to select; this function is outside the naming facility. The object for
which a name is being sought may be cither a different type of object or another,
possibly less meaningful name. Finally, if the untranslate function is to be
supported, an cquality operation is needed on objects, in order to implement the
comparison of the object for which untranslation is sought and the objects named in
the naming facility. 'The untranslate function will recur in discussions of both the

model and the implementations.

2.3 Aspects of Names

A set of aspects of names, by which names can be characterized, can be derived
from the definition of a name. These characteristics fall into two categories, some
dentifying the participants in name management and others relating to use of
names. As listed here, the first three fall into the former category and the fourth and

fifth into the latter category. In order to provide a preliminary understanding of

these five aspects of names, an example from Figure 2-1 is given here. Each aspect
is then discussed below in further detail, including when relevant the general form , 1

of appropriate operations.

- Assignment: Mom and Pop chose the names "Samantha” and "Samuel,”

- Resolution: Samantha and Samuel recognized the name "Thammy,”

- Scope of use: Although "Samantha™ and "Samuel™ are the names given
to the twins, these are not names that Sandy can pronouce and therefore
use. As a result, Sandy tries "Thammy' instead. @

34

T T L R e e N . . . o
R A P A PP G P AP TR 2 Gl SRR SP TR W, ST S SRS V. SO . Sl S AL AL L ST . CUUL . L AU . RN L‘;;Ai

T T ——— /L ANn Sne Snesosom see does sresr e A e S Shen e e ELDE Aom ate S en gves JDan I Jbun e Sent Suas S SR A A n-Sdr S ACI A £

- Uniqueness/ Ambiguity: Sandy tries Thammy”™ but it might be
applicable to cither twin. This may or may not be the desired effect.

- Meaningfulness: Sandy Green is possibly sandy (perhaps indicating hair
color), probably not green, but is g member of the family named Green.

These examples are only that. Each of the points listed above also needs further

explanation and discussion. ‘They are discussed separately below.

Assignment

One of the three sorts of participants in name management is the name assigner, the
other two being the name resolver and the user of names. The generic form of the
operation used for assignment is this rescarch is add_name (name, object). There are
three possible sources for name assignments: an external naming authority, the
object itself or some representative of the object such as its owner, and the users of

the names Each is discussed scparately.

In many cexamples, such as Grapevine [S], Clearinghouse [36] and the
Arpanct {15, 31, 32], naming authoritics are hierarchically organized to allow for
distribution of responsibilitics. Registration of a new name in Grapevine requires

contacting an administrator who will add the name. ‘The hierarchical structure

reflects a distribution of the responsibility in recognition that a single authority
cannot manage such a job alone. Distribution of name assignment responsibilities is b T
also one of the reasons for the move from a network information center being the
sole allocation authority for names of networks and hosts on the Arpanet, to the ®

domain scheme, in which the authority is delegated hicrarchically. Unfortunately,

ncither the central authority, nor even the hierarchically structured set of authoritics

. A.I

. oo .. L
PR . . .
PP LD W EFRIC IR U O WPy

addresses all the needs of a community of name users. A hierarchy docs not reflect
multiple overlapping groups, nor docs it allow for the individual to play a role

except in the extreme situation in which cvery individual is a scparate naming

authority.

.k

LI L N I N PP L SSUELEr Yl TR TP GV W TS Sei SIY NEPY WL U SN TR Yl G WP S S ST > W) DA ST IR G IS RO G W St e 3 = A-_i

PP LT TR Y

- L A B pon e marae s e 20e el AL drul 0l SASE S S M SdE s 2o oo g Cafiioed Sea i Jaie e i

A second source of names is the object itsell or someonce directly responsible for it,
Two examples of this are people choosing their own names for themselves, and the
creators of files choosing names for their files. The individual will understand his or
her own needs, but may not realize imphications of choices of names on the rest of
the community, For instance, a programmer may write a new archival facility that
uses data compression. The programmer may also have written a special data
compression procedure unwittingly choosing the name "compress™, although other
procedures were avatlable by the same name. A question about which compression
algonithm is used must be resolved. Such a decision often uses name resolution and
may have surprising consequences for the user. Thus, although privately chosen

names solve some of the problems and hicrarchices solve others, neither suffices.

A third source of names can be the users of the names. Consider the following
siteation. A group forms to discuss a problem. They discover that there are two
Alexes in the group. In order o distinguish the two in conversation, as a group they
decide that they will use middle names for cach of them. ‘Thus one is called
"Brown" and the other "Harrington.” Neither of these is a name that would have
been chosen by an authority nor by the individuals although the two Alexes realize
that 1f ¢ven one of them is called "Alex™ there might be confusion. This is a
problem that neither the naming authority nor the individual might consider, but it
s important in the area of naming and relevant to the question of how names are

assigned.

Resolution

Name resolution involves translating names into objects by rccording name
assignments at carl'er times. Therefore the name resolver is that entity that
performs the add_name operation previously mentioned as well as the translate
(namce) operation. The name resolver will make use of the equality operation on

names in order to achieve translation. There are many examples of name resolution.

36

IR IR - e A e e e e ., LIS SRR e SN
PGl N A . PP L. LN PP P W IS W D Vil Wi Vg VP Wl Wl Wi Py v u SR Y

L "m_ - ey m e st T~ MRS B S R

In the example above, Samantha and Samucl are performing name resolution by
translating the name "Fhammy™ into themscelves, A lile system is a name resolver.
In the Arpanct, the IMPS that translate net addresses into routes are name resolvers,

The list 1s endless.

Scope of names

The third aspect in considering the management of names is their scope or who can
use them. In this case, the two uses of names come into play. 1tis the user of a
name that will invoke translate. 1t is also the user who may use a name as a place
holder for an object. There is no operation involved here in the use of the names
itself. One can ask whether a name has a global scope, in which case it has been
assigned and its resolution s the same everywhere. Or is it private o an individual?
As in the case ol the two Alexes, is it of interest to a group of users, although not to
the whole universe? There are examples ol attempts to create global names. This
was the situation originally in SNA [10]. SNA is representative of a collection of
simifar situations, in which it is assumed that there s a single, global namespace or
domain within which names arc used. At some point, the developers discover that
there is a need to connect two of these global namespaces. Fach has the idea of
unique names in a global namespace so embedded init, that a very difficult problem
confronts the architects. In SNA, the choice was to maintain the scparate

namespaces, and build a wall between the two, never allowing names from one to

move to the other, but only providing translation at the boundary [3). The idea was

to present to the user of such names the appearance of a single, global namespace. ; *
This is only a facade, and the user may discover by moving across that boundary
that the namespace is indecd not a global namespace in which names have the same T_‘-EI'-'IT‘»:
meaning everywhere. Source routing [43, 35] provides the other extreme from a -0

global namespace, in which a particular name for a particular object must be

completely local and dependent on the user of the name. This situation has the

37

I ey o mane . Py — " T Tp————— " T

problem that names cannot be shared, thus obviating one of the main uses ol names.
But there is a third possibility, a middic arca, in which groups share names and their

resolutions, Rom’s [41] proposal fulls into this middle arca. In his scheme those

who need to know the names do, and, for those who do not, there is no problem il

the namespaces overlap, He proposes an algorithm for changing nwmes within cach
scope so that all names within that scope are unique. FHe recognizes that this need

be carried no further than the boundaries of use ol a name,

Uniqueness/ Ambiguity

Orthogonal to the determination of the participants in name management is the
issue of uniqueness of names. There are three issues to consider when discussing
unigueness. ‘The first s the desirability of it. The designer of a naming scheme
must determine whether any form of unique naming is needed. ‘The second is the
degree of uniqueness needed. 1t may be that a name should be used no more than
once, but that synonyms, multiple names for the same object, would be useful. On
the other hand, it may that cach name can be assigned no more than once and that
cach object can have no more than one name assigned o it Finally, feasibility must
be considered. This was discussed in relation to federation carlier. Itis possible that
regardless of the decisions made on the desirability of uniquess and the degree of
uniquencess needed, it is impossible. The uniquenessZambiguity characteristic of
names is observable in the two opcrations mentioned above, add_name and
translate. I names must be unigue then add_name may fail duc to duplication,
while if ambiguity is permitied translate may return more than one object. In this
latter situation, further sclection may be nceded, cither by inquiring about
additional namcs for the objects in question or by considering other aspects of the

object, such as its type or state.

Both ambiguity and uniqueness have their uses. It is frequently important to be

able to identify or select exactly one object within a set. In fact, it is often assumed

38

Lo e
PO YO A WA

]

o ol .

that cach object within a sct is distinguishable by name from all others. Fxecuting a
picce of code and specifying on which data object it must operate requires
identifying cach, distinguishing them from all other possibilities, The simplest form
ol such identification is to use names, avoiding the use ol selection procedures
sometimes used o create or distinguish objects based on other information. Such a
name needs o be unique within a namespace. 1 the universe is small cnough, it
may be simpler to use a global or universal namespace rather than dividing or
modularizing the namespace, as is often done o create manageable sized

namespaces within which names can be unique.

In contrast, there are situations in which a fack of uniqueness is important. Consider
bricfly Figure 2-1. The baby Sandy may say, "Help, Thammy, F'm lost.,” To Sandy,
it is more important that a familiar face be found than whether it is Samantha’s or
Samuel’s. In a technical example, if data is replicated ina distributed system, the
user may not need or want to know which copy is being used and would prefer that
the system determine which copy is most casily accessible at the moment. Both
untqueness and uscful ambiguity can be scen simply inoa lile system such as
Multics [37] where a name may be a complete path name 1o distinguish a particular

scement or a short name, allowing the scarch rule mechanism and Known Segment

Table to provide the final resolution of the name at the time of use. i
]
A further extension of the idea of ambiguity or lack of uniquencss can be found in

the concept of & generic name. Such a namne identifics a class of objects that have o)
some set ol attributes in common. ‘The generic name allows for identification of S
objects based on that shared set of characteristics by being a label or place holder for b
the set. This s a direct adaptation of Quine’s [39] concept of general naming. ° 1
1
The problems of feasibility must also be considered, cespecially in a federated oo
computing facility. If there is an authority that can guarantee uniquencess of names SRR

®
)
SRSREES
39 LT
3
]
*

The "a” vs. "the” problem
This problem can best be understood by considering a person asking for "a book
about genceties™ initially and then following that with future requests for “the book

about geneties.” In the initial request, one of a collection might have sufficed. After

the name was bound onee o a particular book, that one was the only one that would
suffice. A first step toward addressing this problem can be seen in the Known
Scegment Table in Multics, but generally this is not a problem that has been

addressed thoroughly in naming facilitics.

Selection

Both the goals of multiplicity of names and the recognition of generic names will
lcad to the problem that a name may not map into a single object in a situation in
which a single object is needed. "This problem is common for humans who have a
Large array ol mechanisms to call into play to address it. They may ask about other
names assigned to the possible choices. 'They may call detaulting procedures in to
play. They may ask about the nature of the objects. They may ask whether any of ®
the choices is one that they have chosen previously. They may ask for
rccommendations from others. And the list goes on. The problem is not a simple
one, nor are the potential solutions. Sclection functions appear not to be - .

gencralizable and are best eft to specific applications to handle.

Persistence

Many facihities have a short-term and a long-term naming mechanism for objects. 1
Programming systems are a prime example of this, Consider the runtime system for ‘
Clu [30]. In this case, objects can be named as typed objects within the language,

but such typed objects are not persistent; they cease to exist with the completion of ".
execution of the code. The file system is another naming facility for naming

persistent objects. In order to make an object persistent it is translated from its

runtime form into a form that is stored in a file, which v turn is identified through

53 B

T e P T T Y T T YT Y T T et

The who-is problem

The whoris problem is similar to the name-cquality problem but reaches beyond the
hounds of the computer system, and is therefore related o the goal of providing for
the mantfest nature of names. The problem here is the Tollowing: a person has
received a name inside the computer system, and knows about an object or person
outside the system. The recipient of the name would Tike to test Tor equality
between the inside and outside worlds. This 1s an especially difficult problem,
hecause outside the computer system, humans will use a large array ol other
facilitics, perhaps making use of the five senses as well, in order 1o address the

problem, and those are not avatlable inside the computer.

The mobile-name problem

Part of the goal of multiplicity is to allow a name to be used for more than one
object, but there is a problem that can arise from this. In some cases, such as "Chair
of the committee” the name must be assigned to no more than one object at a time,
but which object is betng named may change over time. The mobile-name problem
reflects this mobility ol a name. The problem may be compounded in spanning

multiple computers.

[.ocation iransparency

[t is very difficult to separate a naming facility from location of the user of the
names. Ha user has access o a set of names in one location, when he or she travels
across the country, the names that he or she uses should be the same. The person is
the same and the objects being named are the same, but in too many situations, the
host through which the user 1s accessing the computational resources has a strong
mfucnce on the names that are available. This problem s labelled location

transparency . ltmakes naming much more difficult for the user.

52

adamimailh

P S
VPR RN

I~

h .
R
PRI

i Al

e PSP I S TG ST S WD W L SR W Y S S D SR /S S ST WL U G S S SO0 W

N ——— P ————— T RS auteis sunet aneie-adi aesume Culdcaten —r

of typing. Constder comparing an object with the object that is its rC|)rcscnlulion7.

[t is not clear whether the two are the same or dilferent objects since underneath it
all they are represented by the same collection of hits, but at the higher tevel they
may not be accessed by the same mechanisms an' the user may appear to be very

different lrom cach other.

A reverse sort ol situation may arise, inowhich an object consists ol multiple copies
keptin different places and rehably maimtained in o consistent state, 1t is certainly
possible o find two different names for different copies of the object, but at some
fevel, even though the names are different the two miay be considered to represent
the same object In this situation, two different collections ol bits may represent the

same object,

Fhe guestion of identity and how it relates to names is complex, and simply
answering the question of whether or not two names resotve to objects that have the
same o different globally unigue identifiers may not an fact answer the deeper
question that is betng asked. The problem here is that although the assumption may
be that the gquestion to be answered is the one posed above, in fact there is a
collection of more specitic questions that need to be answered. and a function that
answers the one above does not answer the more complex ones. In fact, all the
possible questions cannaot be enumerated, because there will be at least one for cach
type of object, and all types of objects cannot be enumerated. In addition, the
numbcer ol questions will be dependent on the uses of those types, again impossible

to enumerate. Thus, the name-cquality problem persists.

Fhis is the terminology that is used in CluJ30]. An object is of a partcatar tpe defined by the
type name and the names of the operations and their arguments and s realized by being represented
by another object of another type. The system provides a small numiber of basic types,

51

The reply-to problem

When a message or some other information is delivered to a user, it is olten tagged
with a name for the sender or source of the information. There are many situations
in which that name is cither ambiguously defined or undefined in the receiving
namespace. For example, at MIT, one of the computers is named "Comet”. In
addition, one the computers at Symbolics is also named "Comet™ and the networks
of the two organizations arce interconnected. 1 someone al Symbolics on Comet
sends mail o somceone at MIT, unless the mail systems change the name Comet o
SCRC-Comet (for Symbolics), the recipient will not be able to respond to the
sender, since the name "Comet™ within MIT identifies a computer on which that
sender does not have an account. In a more aggravated form of this problem, there
may be different users with the same name, one on the MIT "Comet" and one on
the Symbolics "Comct." The reply-to problem is that one cannot always reply Lo a
name, despite the fact that mail arrived from a person with that name. When this
problem is specific o networking it is often labelled as the problem of source route

translation.

I'he name-equality problem

The name-cquality problem arises in trying to answer the following question; given
two names do they identify the same object? This is a particularly difficult question,
and although names are often used to answer it, they do not provide the whole
answer. Ina world where every object has a system-wide unique name (possibly in
addition to other names), and access to that unique name is provided, given two
naimes they can be resolved to their respective objects. By discovering their system-
wide unique names and comparing them the question can be addressed. In other

cases, the objects themselves may support an equality operation,

In addition, there are other considerations that come into play. For example, in an

environment where objects are strongly typed, an object may be wrapped in layers

50

oo e Lt et . .- - . A . . - . A .
LI T RTINS UL T SR S 0T S S N SR SO N i I SO T S W R e N 3 2 e

Ag gl

e e e e e e e e e T

Clearly those rescarchers designing and building genceral name servers
such as Dalal and Oppen in Clearinghouse {36] and Lantz and
Fdigholter in UDS [28] recognize the general applicability of solving
certain naming problems in such a way that the solutions are usable in
many domains. In addition, several rescarchers have discovered after
the “act that ther solutions were applicable o other problems. An
¢ ple of this can be found in the Grapevine project [5], where
alough it was not planned this way, the authors found that the
mechianisms that they developed for naming mailboxes also served their
own needs of naming other services needed by the mail service itself. So
Grapevine uses its own mechanisms behind the scenes 1o provide some
ol the user level services. In addition, Grapevine registration servers
that keep track of names are used for non-mail applications as well,
although the details of those uses are not in the published literature.

With this list of obscrvations, the discussion of the problem addressed in this
rescarch is complete. The final section of this chapter discusses a further set of
problems. Some of these problem are generally considered unsolved while solutions

to others are often sought in naming facilities.

2.5 Additional Problems

The defintion of names and the goals for a naming facility assumed in this research
are broad and simple. The reason for this choice was to provide the common
functionality needed for many different sorts of applications. Frequently, when a
naming facility is built for a specific application or subsystem, greater functionality
is required of the naming facility. Thercfore certain naming facilitics address
problems that may not be addressed by the facility proposed in this rescarch. This
section contains a list of the most common of these additional problems solved by
some naming facilities. In some cases, the problems identified here represent
problems that even humans with their much more sophisticated naming
mechanisms cannot always solve satisfactorily. This list of problems will recur in
Chapter 4 in a discussion of how the proposed model addresses some of these

problems, in spite of their not being goals of the research.
49

-y

P P . P T S S AR, AU . SOOI Al S S VL S S SO AL AL SR S SR Sh-1F VLI SO SR Y VL Sy W SN S

‘e e e o

.. St e
PP AL G

Multics supports a similar syntax. Supporting the sharing of (he
meanings ol names was also one ol the goals of the THFIP Working Group
6.5 1 the mechanisms provided there and described previously in this
work. The property lists of Cocos [11, 20] and Clearinghouse [36] also
have the same effect of allowing users of names to share meanings by
incorporating a means ol allowing lor mcaningful namces into the
naming facility.,

- Usability of mames: 10is casy for people, talking to cach other, to define
and redeline names thus providing multiple names, 1l one does not
suffice. tn addition, without appearing o think, pcople can refllect upon
the chotees ol names and scleet the ones they want. This must all be
casy to do when communicating with and through a computer system, as
well.

Providing usability in naming facilitics is generally not one of the
primary goals in designing naming mechanisms. Lindsay [29] in R*
worked toward a naming facility that would make name resolution
simple for the user. FHis defaulting mechanisms certainly were a step in
that divection, In fact linking and the default name resolution provided
by allowing the user to specify both a working or current directory and a
set of scarch rules are also a step toward making naming facilitics more
usclul without adding to the burden placed on the user of names. These
facilities have alrcady been discussed in other contexts. In a more
general sense, all naming facilities are trying o make computational
factlities more usable.

. Unification: Finally, although scveral rescarchers have recognized that
the mechanisms used for naming one class of boject are also useful for
others, there is an added argument in favor of a unificd naming facility.
In discussing flexibility 1t was suggested that generic names may be
usclul. A generic name may reflect an entity that 1s not recognized as a
single type of object in the computer system. Instead humans apply the
name to a collection of objects, cach of which may be a different type.
This is essentially what was done in Clearinghouse, with propertics. A
uscr has a set of propertics, that may, for instance, reflect different ways
of rcaching the uscr, such as a list of electronic mailboxes, a phone
number, and a US postal address. In fact, these are all different objects,
that have been organized hicrarchicully, presumably because access to
the information is to be based on property names within user names,

48

L NN N et RN SR e T el B
e el e e e e e e DI S L T e v e at e T ™~
ittt ool denddndindhode F SPVISIPIRFURFI S S SR T BTSRRIV SV LTS TS RO

P T T R T ——— T ———— R T S A e S s e abes s ven o el Ran s JRNLTIE J i I B
Pa RN AP A B s Ar 4 AN Sk . P ! . o K T

5. Flexibility of usage: There are several sorts of names that humans use in
addition to unique, or relatively unique, names, For example, names
that reflect role or position, reflecting relation to others, form one group
ol names. ‘The names "Cousin™ and "Chair ol the committee™ are (wo
such. These fall into the category of generic names. An example of a
different sort of name is "the green one” In this case, the name is
descriptive. Tt reflects something of the inherent nature of the object
being named. The different sorts of names implied here reflect different
means ol incorporating meaning into names.

There is not much work on supporting different sorts of names for the
same object other than in Clearinghouse [36) and the IFIP Working
Group 6.5 [18, 59]. In Clearinghouse an object can be named both by its
unique name that may carry no meaning and by a set ol propertics
having values. The WGO6.5 project supports the possibility of multiple
paths through a rooted directed graph, allowing for name components
ranging from those that are simply unique within a sct, but othcrwise
have no particular meaning to names that are attribute pairs and have
meanings.

6. Manifest meaning of names: When objects are given names that have
meaning as well as providing identification, and those names are shared
among a group of pcople, it is assumed that those names also will be
understood by the whole group. If people do not understand those
meanings, they will have difficulty remembering the names. In addition,
as seen in several other works such as the WGG6.5 project [59] and
Multics [37)° when a namespace is divided, one of the goals is that the
components of the name be meaninglul and therefore guessable by the - = 2
potential users of the name. b

Communicating and sharing meaning is often provided as part of the
structure of names. This can be scen clearly in some file systems. .,
Multics and Unix again provide an example. The hierarchical structure R
of dircctories is often used to provide part of the name of an object and
allow that part to have some meaning, An example from Unix might be
"/usr/sollins/Zlib/mail.ml”. This identifies a hibrary wnitten in Mock
Lisp [14] that supports a mail system, and belongs to the user "sollins”,

6I‘hcsc arc only examples.

47

ataa'a®ata"a’a’a PP I IS T LIPS ST TP U IR Y hOw Tl YR W TV YOO SN M WAl WA W Sy i o

e Tr——— —pe— " T——T - DR AR S AL

explicitly. In Clearinghouse one name lor cach object is more important
than all other names lor that object, while the WG6.S work has no such
mechanism. All are cqually valid as long as they define a complete set of
component names, one component from cach naming authority on a
dirccted path from the root to the destination. In fact, multiple names
fall into two categories. "The first category contains those names that
allow only different names fron different perspectives, such as links in a
hierarchy in which any object can only be named at most once from any
dircctory. The sccond is synonyms within a single namespace such as
Lindsay's set of synonyms for R*.

4. Locality of names: Conversations are a common soutree of local naming,
Within a particular conversation, the participants will define the names
that they are using locally in that conversation, As they move o other
conversations, those names may have different meanings. For instance,
the name "Alex™ may identify one person in one conversation, and
someone clse in another. I both Alexes participate in a single
conversation, the group of participants may agree on different names for
cach of them, or find other ways to distinguish them. Tocality is used by
humans constantly in order o avoid having o provide unigue names
over all experiences.

Directories, whether in hicrarchical or non-hierarchical file systems, are
onc of the most common forms of providing local naming. This can be
seen in Multics and Unix tn their hicrarchical file systems as well as
those previously mentioned non-hicrarchical file systems. ‘The need for
local naming can also be found in networks. In SNA [3], although the
attempt has been to provide an image of a single namespace to the user,
in fact what is provided is a collection of local namespaces each
consisting of an SNA nctwork. To move from one namespace to
another the user must move from one SNA nct to another. The domain
naming project in the Internct[31, 32) is aimed at providing local
namespaces by dividing a single namespace into a hicrarchy. In R* [29],
full names consist of four components: the creator’s name, the creator’s
site, the site of ereation, and a name that is unique given the other three
components. Local naming is supported by supporting defaulting of any
of the first three components. Saltzer [42] in his treatise on names
discusses the need for locality in naming even in a centralized facility in
order to achieve modularity and provide for sharing,

. . e . Lo AN S e el P T T S S AR IS
PP TP Y AT PR PPN CIP P L URPRIT S Gl VIl TOE S BUE WL SRSl Sl S K SO0 L TR . e

—————— -——v ———T— T T T Y T
————— S T T P T g e e e OubRE At bt e S et St T ;

both systems support aliasing on a per user basis, allowing the individual
Lo personalize the names used for invocation and other forms of naming
as well. Synonyms can also be found in many systems. For example, in
R* as part of a more complex naming and cataloguing scheme [29],
Lindsay has proposed private synonyms. ‘These lists arc on the basis of
an individual user at a particular site. Many other systems (such as mail
systems providing private templates) also support individuality to one
degree or another. Just a sample has been discussed here,

3. Multiplicity of names: Allowing for a particular name (o identify
different objects and for different names to identify a particular object,
provides a flexibility present in human naming, but olten not in
computer systems. For example, many people have the same nickname,
Itis often advantageous to name people having the same family name by
referring to them by their family name. In addition, in some cases name
assignment varying with the situation and time may be usclul. For
example, the tide "Chair of the committee™ will be resolved differently
depending on which committee is being discussed and when. 'The other
side of that situation is that such duplication in names may sometimes be
confusing. In those cases, locally unigue names such as nicknames may
be created.

Again, there are many examples of multiplicity in the literature, Source
routing [43, 50] provides an important one. As its name implics source
routing is & mechanism by which an object is named at the source of the
name by the route from the source to the object. One distinguishing
characteristic of source routes is that they are dependent on the source _
and thercfore imply multiple names. In addition, the forms of naming
mentioned under individuality also support multiple names, although
there arc other forms of multiple names as well. They can be found for
instance in IBM’s SNA in the mechanism for joining two SNA
networks [10, 3] SNA provides a static hicrarchical structure for - 1
internetworking and aliasing local to each single network, providing SR
multiple names for hosts, although from any location only one name is
accessible. The aliases may not cscape the local network and are shared
by all users of the local network. Within a single network the
namespace, including aliases, is flat. Thus, in an internetwork of SNA
ncetworks, there may be a different name on cach nctwork for a
particular host. Both Clearinghousc [36] and the IFIP Working Group
6.5 work on names and directorics [18, 59] support multiple names

45

. B - LT s
. L e e et e T T A P T . . .- LS .
N e e T e e e e e e e e e e e T e e e Ay e e N e T e e e s e e U et -

. . PO S L S S T .. . BRI . . Lttt ettt et . v o
PR P S NPV SR 1S R WL WA Y WL VT W VR w wl Wp JT WP S W WP ey Wy v el dannfinn - Simatntimaimeianabendeseduindeinialn

At e et e et sl A

R A A P A i B Al AT SN oad W NS oPe Aoy e me v Sl e gamh Aenoeil eulh Sed S ik e e sl S il arit SR aeb et et S B A A A

Multics also provides an interesting example of local shared naming,
that was designed with a particular issue in mind. For cach process,
there is a Known Scegment ‘Table that maps a nickname into a particular
segment on a per process basis. The table is shared by all procedures
ranning within that process. When o local, short name is used in a
procedure, the system cheeks the scarch rules for the means of resolving
it Normally, the first entry in the search rules is the known segment
table, folowed in any order by the directory ol the calling procedure,
the working dircctory, the user’'s home directory and any other
directories specilied by (he user. None of these is required and they can
be i any order although some orderings will lead to unpredictable ,
behavior. The idea behind this mechanism was that if a nickname were °®
used in a number of procedures, it should be resolved to the same ' 1
scgment, so that, for instance, il one were working on a database, all the ;
procedures would share the database. On the other hand, it also can]
provide for anomalous behavior, when the programmer of a procedure #
had a different resolution of the name in mind. For instance, it 1s o |
possible that two different procedures may have the same name, but i |
provide different functionality and different results using different . f
arguments, Despite this potential problem, the shared nicknaming L
factlity 1s commonly used in Multics.

[—
.
2. hdividuality: Each creator of names is different. Those differences are '

mantlest both in the individual's set of experiences and decisions based A
on those experiences. No two individuals have had exactly the same set T
of experiences. In addition, in the same situation two individuals will ‘..'-..L;‘..;J
make different choices.® Therefore, in any joint decision such as »‘.__ 1
choosing namucs, individuality also plays a role. ;]
Various forms of private nicknaming, linking, aliasing and synonyms]
support the individual as distinct from the community. In Multics and ° A

Unix, local linking to segments or files in other directories supports RS
private names for these objects on a per directory basis. In addition, '

4I~'()r example consider not putting the known scgment table first. This can lead to multiple
occurrences of a name in the known segment table, If the known segment table is used to resolve the
namc, which resolution is used will be implementation dependent.

5Nn implication of a causal rclationship between experiences and choices should be interpreted
from this.

44

R W A ST SN RAP L G AP AP L I I P NS

determines repeatability of assignment. Finally, (he degree of meaninglfulness
determines how much and which information can be conveyed by using a name as a

place holder. None of these aspects of names needs to be dependent on the others.,

2.4 Aspects of Human Naming

As mentioned carlier, humans provide a uselul paradigm for investigating naming in
a federated computing facihity. Therelore, itis useful to understand how humans
name. The following is a list of obscervations about human naming that were listed
bricfly in Chapter 1. Each will be considered here in more detail. In addition,
where relevant, related hiterature will be noted. These cight observations form the
basis of a further understanding of the goals of this rescarch in relation to
supporting naming in a federated system and providing sharing and communication

of and through names.

1. Communication: There are two aspects of communication. One aspect
of communication is cooperative use of names. In addition, information
related o named objects may be shared and passed between the user of
a name and the recipient of the name by passing meaning ful names.
The individuality of cach communicant is closely related to joint naming
and shared responsibilities for names, although that has been separated
here as a distinet issue.

Examples of sharing namespaces can be found in many other works.
The most common place where operating systems provide sharing is in
their file systems. Hicrarchical structures such as those ol Multics [37]
and Unix [40, 57] provide sharing by the use of working directories and
scarch rules. Non-hicrarchical systems such as OS6 [48, 49],
Fden {1, 19]), and CAP[33, 34, 60] also allow for similar means of
switching namespaces or resolving names in other name spaccs.3

J'I'hc Alto operating system [25] also provides a non-hierarchical structure, atthough it is a single
user system and apparently little use was made of any facilities for dividing the namespace into
directories or subdirectories.

43

T e e e N e T s e e Te e e e e e e

GRS R e T T N s T T T e T T e e e e T Tt o
R TP P P A G D S N I Sl S S R LR LS. . L LR L D . L S . RS

although the information may be used as part of the selection process of finding an T

object. For mstance, one might want to find all the objects created before a e

o
patticular time. This sort ol identification and selection is not within the bounds of .
what is identificd as naming in this rescarch, h
Recognized structure in names is another form of manifest meaning. 1Wa structure ;.
is understood, components ol that structure are recognized as having meaning. ‘The
simplest structure is a flat namespace in which case cach name is composed of a
single component. ‘Two examples of flat namespaces in networks are RSCS [17, 16] .

from 1BM and the older form ol naming hosts on the Arpanct [31, 32, In addition
numcrous simple file systems and user identification schemes as well as other
examples support only flat naming. A second common structure is the hicrarchy in
which the nested components may reflect meaning or another one of the issues
discussed in this section. A third form of organization is the directed graph, where
cach node may have more than one parent and morc than one offspring. The
schemes used in R* [29) and the IFIP WG6.5 proposal [18, 59] [all into this category.
In thesce cases a set of name components may be presented to the user as a choice of
hicrarchies or as an unordered set of components. It is this third possibility that

seems to reflect the structure of names that humans usc most often.

The manifestation of meaning is an unstated issue in the work of Saltzer [44] and i'.-_._'.j'-_‘.:'-
Shoch [46). Both rcalized that different names manifest different sorts and degrees EN
of mecaning to diffcrent assigners and users of names and each author based his ™

characterizations of names on the views of those assigners and users of names.

These five attributes of names allow for comparison among different naming ST

schemes along orthogonal axes. The three roles ir. «...is of choice and use of names -

address the questions of who plays those roles. The choices can be related to each

other or independent of each other. The degree of uniqueness or ambiguity
°

o o

A Pl Pl i it e et e atras Sae o duli-ndnit- ngul il SR AN~ ol A e et i AL A S o OISR et il UL L AR AR S S SFE S S

Meaningfillness e
From the points of view of the assigners and users of names, those names can fall -
anywhere in a range from those that have no relevant meaning to those that also

carry a great deal of information about the named object. The simplest names carry

no meaning and are only labels, One example of these is the set of numbers

generated by a random number gencrator and used for tabelling objects. Any
3 rclationship between any two such names is purely accidental. A user of the name
"Sandy Green™ is unlikely to assume the named person is in any way green, but may
r;‘ assume blonde hair from the name "Sandy™. The nickname "Tcach™ may not only . o

be a name for a person, but also carries the information that the person so labelled is

Ty

probably a teacher. 'The name "President” not only identifics an individual, but also
indicates the relationship between that person and other members of an :

organization. Furthermore, humans sometimes associate an attribute that is to be

1 -'ﬁ""
®

= used as a name with an object, e.g. "position: president” so that in the future one

L e ma

. can identify the person with that name. 1t still is the case that the name must have
been assigned as a name in order to be one. This is separable from whether or not it S

is meaningful,

A further extension of the idea of identifying an object by information leads to S
identification of an object by aspects of the object that may not have been
preassigned, but have meaning in relation to that object. For example, consider a

situation in which family names have been recorded for people, but not substrings

of those names. Then, selecting those people whose family names contain the string

“ollins” but for whom that is not their full family name is not naming. In addition, o

information about an object may take a form similar to that of an attribute. An
example might be a timestamp of creation for an object, in milliseconds since the o

beginning of the century, such as "CreationTimestamp:27162241234". It is

improbable that anyone will ever usc that information as it stands as a name, T

41 o

o \aliat
L U

M it
.

F.

p——

PB4 Be e s e Marte Ses I AU A Sty AR Sege Jnge T T v~ T ~r- ASul At Bath Stk aed

cither by gencrating unigue names or by verifying the uniqueness of names
presented o it then it s feasible 1o base various schemes on the Tact that unique
names are available. A centratized computing facthty can probably make such a
enarantee, although even in this case, it s difficult, Once technigue for gencrating
unigue identifiess is to use sequential numbers, reliably remembering the previous
number that was used. This is feasible only if the numbers can be generated quickly
cnough and if the means of remembering is rehiable enough. Some systenrs have
used the clock to generate names, assuming that it is both reliable and fine grained
cnough. Another scheme is o subdivide the set of names, allowing cach of a «
collection of authorites to manage a subsct ol the names. This provides some relief
for the problem of a single authority being a bottleneck, but it increases the
probability of duplicate names if unreliability is a problem. For example, if there is
a power lailure, instead of a single authority possibly handing out a duplicate name,

cach authority may hand out a duplicate name.

The problem of feasibility becomes more complex with consideration of merging (
namespaces in which the names have been selected by independent naming
authorities cach of which assumes that it is choosing globally unique names. The
problem in this case is how to deal with uncxpected duplicate names. Both S
Rom [41] and the architects of SNA [10, 3] dealt with the possibility of duplicate
names because it was important to cach of the underlying architectures that names
be unigque. Rom's decistion was to replace duplicate names invisibly, while the SNA
solution was to keep two namespaces separate, but gloss over that fact at a higher
level, In fact. this is not how humans address the problem in their communication.
Instead, they live with the possibility of ambiguity, recognizing that globally unique
names are not possible, and they manage without them, relying, when necessary, on (

locally unigue names.

40

e e e e e as B AL U S . AR A L P SO ST WAL AL, NS T Sl SUAD Sl S WU VAN SR Yl VU S TEAP U L WU S St |

pon— - B ———— R /AR Senmn Suass mness s e eeumconaie Siu e Rt Snhe Ak sa S e —— —— Y

the file syctem. Clu provides a facility, alben somewhal awkward, for retaining
some Ly pe information when an object is tran<formed using the "ge-dump™ facility

to save an object in a file.

A sccond example naming persistent ob: v can be found in the Macintosh

operating system [2], in which files containing data have associated with them the

program that created them. When a file is "invoked” that program is invoked

{ operating on the datain the file. The Eden system [1, 19] provides a third example,
'r"' although it is still in the prototype stage. Finally, the Swallow repository [52, 51 was
i a prototypical storage lacility designed o support objects rather than files. There

are other such rescarch projects, but the idea of persistent objects is not widely
accepted yet, and it will be a tong time before the small step taken by Apple in the
Macintosh will move even the small set of rescarchers, much less the larger group of
programmers, o the recognition that all objects should have persistence as they do

outside the computer systen.

This concludes the discussior I the problems that are and are not being addressed

- by the naming facility modelled in the following two chapters.
i?u s
- 2.6 Summary

The emplinsis of this chapter has been on the problem being addressed in this

rescarch. The problem itself can be stated simply as the design of a naming facility
that supports names and the functions for which they are used, allows for
communication both of the names themscelves and of information by mcans of the
names, and is implementable. [order to design such a naming facility, one must
understand names, the definition of them, what their functions are, and how they
are used. ‘The definition of a name is simple. A name is an object that can be

associated with another object of any type and that has an cquality operation on it.

54

P———— T - BN e den~ e ha/l Zage et S 4

A name has two possible uses. 1t can be used as handle providing access to the

object named by it or it can serve as a place holder for that object. -

There is more to understanding the naming problem than these simple definitions.

The assumption of a federated computing facility means that not only will
cooperative activity occur at the convenience of the communicants, but also that it .ﬁ
will be intermingled with periods of isolated activity. 1t is the need for cooperation
while allowing for autonomy that makces the problem more difficult. Human

interactions provide a usclul paradigm for understanding the patterns of

®
communication and autonomy in a federation of computers; therefore, human
interaction and naming was cxplored in order to understand the problem in a
federation better. Section 2.4 presented a list of observations about human naming

that are taken as subproblems of this research project.

In addition, there are a number facets of naming that can be used to understand and
compare naming schemes including the one to be proposed in this work. They .
include identification of the participants in the naming activitics, the assigner ol a

name, the resolver of the name ifitis being used for access to an object, and the user

of the name or the scope over which the name is known. Furthermore, two
additional attributes of names are the degree of unigueness of a name and the o

degree of meaningfulness. The degree of uniqueness is reflected in whether or not a

name can be assigned to more than one object or not. Mceaningfulness reflects the
information that is inherent in the name and therefore can be carried in the name °

itseIl when the name passes from one user to another.

The definitions of names and the problem being defined in this research are
somewhat different from past related work. Others have often imposed a greater
functionality on names and naming facilities, losing generality by including -

functions that arc application specific. ‘The definitions chosen here were selected for

55

PRI L P I S Sl Tl S

M S oo s i - N S A S e e sl iiel el M MM M VISl SN SO it aeetrasll el asdih gl AU AL MM nalL NN sewh ek SAte SR aSne inets s

their generality and therefore the assumption that a solution that addresses them
will be of general applicability, The next two chapters present the proposed
solution, a model for a naming facility. Chapters S and 6 address the issue of

implementability.

-

Y

r

: © 4
\ 4
o |

56

— e P — d |20 e e s Sedt s R ar - SRR Sl a3
R —————— N e e B i e S s e b e et A) T ;

Chapter Three

Sharing and Individuality:
The Model, Part |

3.1 Introduction

This chapter and the next together describe the model for a solution to naming in a

computer federation. Chapter 2 investigated the computer naming problem posed

L 4

in this rescarch in detail by comparing it with human naming. ‘This comparison led
to a fuller description of part of the problem based on the observations of human
naming as well as discussions of the uses of names and a better understanding of an
orthogonal set of characteristics of names. Human naming is a complex and rich set
of mechanisms. In order to create a mechanism that is currently implementable, the

model proposed here is an approximation. [t is not presented itself as a proposal for

) INEDEDR

the mechanisms used by humans, but rather it is a mechanism that exhibits an

approximation to human behavior in order to meet the goals of this rescarch.

f‘ The method for discussing the model is as follows. 'The model consists of two newly
defined types of objects. One new type, context, supports sharing of names and

name management among a group. The other new type, aggregate, provides an

individual’s viewpoint on those shared objects. Each type is discussed scparately, R
although the two discussions follow the same pattern. The set of issues related to
joint management and shared responsibility for shared contexts is separated and S e

discussed in Chapter 4 in order to simplify presentation of the material. These two

j chapters together describe the model. Therefore, a summary of how the model -8 4
achicves the goals is left to the end of Chapter 4. : :‘?"'_1 B

. . .:

The discussion of cach of the two new types proceeds along the following lines. The !

° -®
-

. o
: 57 e

v.'
[

[]
.

PR S . RPN SR . St e e PO
- . ISP R e T AL NSIIL B I I S R T I N R R R Y R 4
EE P P P P R W S W 1 VI PR WU WP S W W WA WS W SR WS SR & o DY

T —————

. - e ..‘ ‘." Tt o .'>.." « - -: -'-l
atata alal ol Sl el A il A Al e

A A AR e e e

presentation begins with a definition and discussion of motivation and usc of the
type including such issucs as naming objects of this type, initialization, and
containment ol objects of this type in other objects of the same type. "Fhe discussion
proceeds with identification of the basic operations on the type. A more complete
list ol possible operations is included in Appendix A, Finally, implementation
issues relting to cach type are discussed, including management of multiple copics,
synchronization of distributed information, communication media for such
distributed information, and a review ol initialization questions. The chapter
concludes with three examples of the use of the two proposed types of objects, first

in a human interaction, and then naming facilities in two existing systems,

3.2 The Context

Definition and Discussion

Definition: A context is a shared object that maps names into either objects or other
names. These mappings are in one of a series of stales ranging from unknown or
deleted to fully accepted. In addition 1o the mapping information, a contexi contains
information reflecting the identity of the participants in the sharing and joint
management of the context. Any information in a context may vary over time. There
are (wo functions on names supported by contexts: access to a named object and

substitution of one name for another.

In the approach in this research of modcelling human use of names, a context
represents a focus of interest, and as such may be shared among a group of users of
the names. In its simplest form it is based on the idea of a working directory in a file
system such as Multics [37]. In such a system, the user can change working
directories explicitly to reflect a change in the set of name mappings that is to be
used. The idea of names being mapped into other names is a direct extension of the
idca of links in a file system that allow a name in onc directory to be mapped into

another name in another directory.
58

o St = SRR . et \‘.-_ L "--4 -. -','-_. ->'.<‘." ._. I - R
P W I, WA SR Tt S W S . M. P, - . ST R L, S

~

o

[
’ . - ‘
' i
-0 <

3

<
-
R
)

Rl

)

There are two issues that will be discussed further in Chapter 4 but are worth
mentioning here, First, one component of a context that does not have a
counterpart in a working directory is the list of participants reflecting the shared
nature ol contexts. The group of participants is not only the users of names, but also
the group sharing responsibility for managing the context. ‘Therefore, as a group
they will add and delete names, decide when the context should merge with another
or perhaps when it should divide into several. Second, a mapping in a context may
be inone of a number of states, reflecting its previous use in that context. Prior to
any assignment or use in a context, a name will be unknown in the context. Usage
may cause it to move through a series of states until it is fully accepted as a name in
that context. Disuse or explicit deletion operations may cause a name to pass
through a scries of states until it is deleted. Continued investigation of joint

management and the states of mappings will be delayed to Chapter 4.

There is one further aspect of the functionality of a context that must be mentioned.
A name may be reserved without it being assigned to another name or object. There
are many uses for such a possibility. A name might be reserved but not assigned
cither because the object to which it will be assigned does not yet exist or is
unknown or because the name has been deassigned until some further event. An
example of the first situation may arisc in programming, when a procedure calls
another procedure that has not yet been written. The second situation inay arise, for
example, when a procedure provides a printing service, but the code is found to
contain so many bugs that it is temporarily taken out of service. The name by which
it was invoked should remain reserved for the time when the code is back in service

or a substitute is found.

Figure 3-1 provides one possible depiction of a context. It has five entrics including
three names for one object, one of which is indirect. Two objects are named. There

are three users participating in sharing the context. In addition, there is one name

59

S . L. . Lt et . T e T ot . S e e e T
T TIPS B I A S P U LIPS S AL N S TP U S SO TP W P A T S S S S SR 1 P TSNS e

r
'51
4
4
‘4
- 4
.l
o
- AL
R
—
e
@
. 1
. .“
K »
i
®
: R
N

T
S N S .

that is unassigned. Fach entry in the context is in one of several states, represented

LA L LB

by the letters, "¢, "a”, and "d”, for "candidate™, "accepted”, and "deleted”.

{object 1)

Context
{(name:s and name t 1 a J —_—
objects) nal -‘_2“ LT _‘5‘
—_ "}_, ¢ _"d"l?_ (object2)
name3d a T
nam—ez' Id L J— —
names c
{partici- usert
pants) _ —u—ser2_— —_
B Tuser3
Figure 3-1:Depiction of a context
Operations

There are four operations of primary importance on contexts. In addition, many
others are needed to make contexts usable. Only the five basic operations are
discussed here; a more complete list is included in Appendix ALl
create = proc () returns (context)
This operation is the local operation creating a local copy of a context. It
creates a context containing no names and only the creator indicated as a
participant. Prior to creation of a shared context, negotiation must take

place. This ncgotiation is considcred further in the discussion of
implementation issucs.

add_name == proc (context, name, [object])
A name is added to a particular context. The addition procedure must

60

I T A T P SR P R S T T . I T TR I . T

1
]

. 4
4

1
X
U

T

"

4

e LMt e Sue Mse Seve et S e oSN Mgl LB ansl SevE EPEL GuUR SN GI-ELdLENL A i I S S T e I PR S i At el S e Al A SrE G A At

take into consideration the issues to be discussed in Chapter 4, reflecting
usage of the name and the degree of sharing of responsibility for name
assignment. ‘The object argument may be another name or some other
type ol object. In addition, the object argument is optional because a
name may cither be assigned to an object through this operation or
reserved for future assignment. In this latter case the
assign_object_to__reserved_name operation will also be needed. In
Appendix A1 two operations have been provided, one with the object,
add__name, and one without, reserve_name. In addition, an opcration is
then needed to assign an object to a reserved name,
assign__object_to_reserved_name.

translate = proc (context, name) returns (sctfobject])

This is probably the most commonly used operaiion on contexts. ‘The
translation operation takes a name and returns all the objects and names
into which the first name is translated with the context provided. ‘The
invoker of the operation must be prepared for several possibilities. First,
the name may not exist in the context. Second, it may exist but not be
assigned to an existing object. I'hird, it might be translated into another
name in another context, and fourth, it might be translated into an object.
Furthermore, the invoker must be prepared for more than one
translation: the set may consist of representatives from any of the four
possibilities.

untranslate = proc (context, object/name) returns (setfname])

As discussed in Scection 2.2, this operation is the reverse of translate,
although the vatues returned by this operation are more predictable than
for translate. In this case the only response 1s a possibly empty set of
names. Again, the invoker must be prepared for the response being a sct
of more than one name. This operation was found to be especially useful
in the clectronic mail implementation because mail would often arrive
from senders not using this maid system, but rather their own.

add_participant = proc (context, participant)
This operation is needed in order to define the list of participants sharing
a context. The means of identifying participants has been excluded from
the naming facility and this rescarch. The reason for this dectsion s that
identifying participants may involve complex activities that certainly do
not fall within the bounds of naming as defined here. For example,
participant identification may include sophisticated authentication

61

- L

.o

- . E

T

‘ 5

.
=
RO

1]
P
laca.s A

c
_—
Y

.
'a ‘a .2 le -4

R .
SFRUE S ST LA

- : r '_‘4_'

. - i -’ - -) - - - - " . . - . . . " . . ~ P - N P - : - ‘.~ e . - * o ST - -7 P) to. . ‘.‘ " .. - > A. W= “
‘e e les e tellanimamoeoalla PRI AT TR L. LR S ST WD LT AU S W TRE VLl Tl Yl O S VL S G W Yol VU T G S W S W L el i Ly e |

EIMa-SIC - S gy b Sl e~ S Svie oL B e e At S Segn Shdte Sash S Shets s Sass Jhuge unes siute o

procedures. Al that will be sard here is (hat a mechanism for identifying
participants must be available and it will vary at feast from one system (o
another and possibly from one subsystem to another.,

In order to use contexts, many additional operations are needed. Appendix
A.1 contains such a list. "These operations include operations for deletion of various

picces ol mformation, such as names, bindings, participants,

Implementation Issues

The implementation issues for contexts fall into three categories, clfects of
federation, communication, and naming of contexts. In order 10 provide service in
the face of discontinuitics in cooperation in a lederated computer lacility, a context
that s shared across such a federation must be implemented as multiple copics. The
rcason for this is that if a name has been defined in a locally known context for a
local object that name must be usable for that object even if the remainder of the
federation is not in communication. In addition, there is a further complication. It
is possible to define a context in such a way that any individual participant is
allowed 10 define new names in the context. In this case, if the federation is in a
disconnected state, the local user should still be able to define new names in the
context. This also points 1o the need for a local version of the context. On the other

hand, local versions or copics require synchronization.

The synchronization need not be perfect. As a result of federation, copics of the

context need not be kept in perfect synchrony. In fact, for a human interface such

behavior is probably both unnecessary and undcsirable. As long as mutual
agreecment on the contents of the context is eventually reached, it need not occur T
instantancously or even atomically. Modifications to a local copy need only occur : '.

by the time ol next use after their arrival at the local site. This may appear 1o cause

problems, for example, if two uscrs attempt to define the same name in a situation in i

, e
S e
PR T R

which cach name may have only one translation. Such a situation should occur. Ifa

SO
62 RS
PUNCINE

®

context s created with the restricion that a name occur at most once in it and all
uscrs have equal responsibility for assigning names, no user can be allowed to deline
a new name unilateratly. Communication with the other copies of the context is
necessity and such a proposal for a new name can be at best only tentative, pending
synchronization with all other participants. The issue of synchronization will be

discussed further in the constderation of implementation issuces for aggregales.

In building a naming facthity, one must consider what information needs to be
communicated and how that will be achieved. The sccond arca of concern in
implementing contexts is communication, ‘There are two sotts of information that
must be communicated in relation o using contexts. The first is the names
themselves and the second is the negotiation information related to management of
the shared context. Closely tied to this is a determination of the medium of
communication. As will be seen in Chapter S, in the clectronic mail system, the
medium of communication was the mail itself. The medium of communication and
the use of the names will determine the representation form of the names that are
passed among participants. In addition, the medium of communication and the
objects being communicated will determine the form of communication that is
available for the information needed o manage a context. Management
information is needed tn order to reach agreement on initializing a new context as
well as o make deasions about adding and deleting information in the context.
Ihere is an underlying assumption in this discussion of communication and
inttiadization that there 1s some basis for initiating communication. ‘There must be
some agreement among the participants on a communications protocol. In talking
to someone one has never met betore, there will probably be an assumption of a
common language and possibly soime common experiences. acking that there may
he an assumption of understanding certain facial and hand expressions. Without
some basis from which to begin, negotiation and communication cannot be

ostablished.

63

PN .
PIVLT TS WY

Sad ook A 4 4

.
S
idh

ek A3

The final implementation issue in relation to contexts 18 how contexts are identified.
Contests must be identifiable in order both to manage the information in them and
(o use them i name translation, aceessing objects given names. Since a context is an
object it can be named m another context just as any other object can be named.
[his quickly reduces to a problem of initialization, that was discussed above,
Agreement must be reached not only on the fact that a context will be created, but
also how it witl be adentificd. Interestingly, humans use more than a name o
ientfy acontext. They also use participants. Since participant information is pait
of every context, it can casity used in the selection process in cheosing a context
from within which to use names. Because participant identification may not be by
name, selection of a context based on participant information docs not fall under the
responsibihities of the naming facility. This issue of selection versus naming arises in
an important role i a programming support cnvironment and therefore is discussed

further in Chapter 6.

To review, in this section an object type called context has been proposed as the
basis for shared naming. 1t is jointly managed by a sct of participants and contain
not only the relevant naming information but also some form of identification of the
participants. Name translations in a context can be in one of a number of states
reflecting previous usage of the name. The basic operations on a context arc to
create a context, add names and participants to the context and to transtate names
mto objects. In addition a number of other operations are needed for general use
and management of contexts. The assumption of a federated computing facility
feads to the implementation requirement that multiple copics of a shared context
exist, one for cach independently operating entity. Further issues that must be
considered in any implementation are synchronization of those multiple copics, how
communication occurs and what is communicated, the basis for communication, and
how sclection that is not straightforward naming, such as in selecting a context on

the basis of participants as well as an agreed upon name, is to occur,

64

3.3 The Aggregate

Definition and Discussion

Definition: An aggregate s a private object that consists of a current context and ar
cnvironment. ‘The current context is shared among aggregates belonging to the several
participants of the context. An environment is a partially ordered set of contexts used
in the partial ordering specified to transtate names not known in the current context.
Any o information in an aggreeate may vary over time, The functions on names
supported by aggregates are aceess to a name object and substitution of one ticme for

another,

The view taken in this rescarch s that all naming is done through the naming
lacility. "This is not to say that there are not other ways of identjlying and accessing
an object, but only that all naming is to be through the naming facility. Each
namespace of a user is an aggregate. The aggregate is a private view of a shared
context. ‘The context is the namespace shared by a group for a particular purpose,
with a particular focus. In addition, cach participant has his or her private view of
the sharing. 1f a group of people have a conversation, they will jointly define terms
and use nicknames on which they have agreed. In addition, the issue of the
participants’ individuality must be considered. In order to capture these ideas, an
aggregate is composed of two components. ‘The first is the current context which is
the shared context representing the focus of the group. The sccond component is
the environment, a partially ordered set of other contexts in which the individual is
also a participant and [rom which he or she may wish to draw information. The idea
for the structure of an aggregate is derived from the concepts of working directorics
and scarch rules. The current context is derived from the working directory and the
environment, from scarch rules. The user of names would like to be able to draw on
other expericnces without having to be exphicit about it, Unlike the scarch rules of

Multics or Unix, in this rescarch a partial rather than a complete ordering is

65

— - a aa e e c ez e PP P - . e A aa . e e aleacta.tataNa"

NPV P A W

VI
L._’.'A‘AA

Y

g SRR
P T W L S)

permissible. This decision is in keeping with the fact that names may be resolvable
1o moie than one object. If there are several contexts at the same priority in an
agpregate, then all resolutions of o particular name in those contexts have equal
priovity within that aggregate. A "rule™ is a set of contexts at a single priority in an
covironment. Figure 3-2 15 one possible visualization of an aggregate. 1t has the two
part current context and an environment with three rules. ‘The first contains two

contexts, the second, one,

Operations

The operations on aggregates fall into two categories, those that have counterparts in
contexts and those that do not. Even the operations in the first category are not
identical to the comparable operations on contexts. The operations on

cnvironments, adding contexts to rules and adding rules, are completely new here.

create = proc () returns (aggregate)
Creation of a new aggregate involves creation of a new context as
described for contexts as well as creation of an environment. Although
this operation volves creating a hew context as the current context, in
the mail implementation, as will be seen in Chapter 5, creation may
involve using a pre-existing context as the current context.

add _name = proc (aggregate, name, [object])
This operadon is quite similar to the comparable operation on a context
except that an aggregate s identified and the addition s made to the
current context of that aggregate.

translate = proc (aggregate, name) returns (sctfobject])
The translate operation on an aggregate is somewhat different from
translation on a context, above and beyond the fact that one of its
arguments s an aggregate. ‘The net result is similar, return of a set of
objects having the name assigned to them. The difference is in the
aggregate’s resources used. First, the current context is checked. If there
1Is no translation there, the highest priority set of contexts in the
cnvironment s checked (the first rule in the environment), and so on
until a rule in the environment is found having at least one translation.
All translations at a particular rule are considered cqually valid. Thus, the

66

.

il ek

A

WP Y

.d

e = - BTN ~ A — M= T R— % - w - XN~ -7 " ¥
v v e hd -~ -

[]
o
(aggregate?) X -
AGGREGATEA1 e
®
. (aggregated)
//
[]
envi
ronment {aygregated)
. .
. . “i
(aggreqates) IR
(namls aLd '_.-:'.'
obeclk) I W
cutrent A’ 7 ® .
context ' l L
participants
ST
®
Iigure 3-2:Depiction of an aggregate o
T N 3
. . . L4
otder in which contexts are checked within a rute and the order of the _ i
returned values are meaningless. y
translate proc (aggregate, object/name) returmns (setfname]) _ 1
The nntranslate operation is also somewhat different from untranslation s |
on a context, i the same way that translate s different. 1f the object is B
not named i the current context, then the environment is used. Again,)
all untranslations within a partcular rule are considered of equal SRR
importance. The untranslate operation was found especially useful in the T
®
67 3

e T e e T it el e el ™ W N T WL T I R IPAS W TP S S WO T W S U DA T PPN B 1A SIS0 L Py W W e |

ALBAE el i ok M ont e 2 Mk M de N Arie Saen Soth At e SEcnC an SReCa e A e A T ok anmanh bttt S

his discussion returns o Figure 3-3 on page 73, There are several things to notice
about the mteraction presented in this figure. The first is the degree o which
hegotiation is takmg place. I makes the initial comment, 11 picks up with "horses
head™, then 1 omodifies i and 1 picks up on the modilication, T proposes
“scahorse” CHE adds o the modilication, 1 ases the head idea once more, and they
settle mnto “scahorse™, both using it from then on, The second and third points stem
from noncing that all this negotiation happens on the first page. There is a rather
mtense period ol negotiation consisting of seven relerences to the ligare, alter which

agreement has been reached. The total number of references belore agreement is

reached is not high, o this case seven, although in many other examples it is even
lower, In addition, because this occurs in a short period of time, the fiequency of S
reference is high. Fourth, the name passes through several mutations, beginning S 1
with a comparison to a "horse’s or other animal's head™ to assuming just the term
“horse’s head™, through the stages of "scahorse”. Carroll [7] discusses various lorms K :
ol mutation that may take place, that will be discussed further in Section 4.3. The
tth pomntis a hittle more obscure. Although the rescarchers chose the label "B" for . }

this shape, the subjects chose a name that has some meaning to them; it describes a

shape that they both understand. 1C1s something that cach assumes the other will
hnow and underseand. Such a name is something that the participants realize that @ 4

thes share with es hother in a different context,

Vtention must be given to the fact that only a single example was discussed above.

One cannot make gencetalizations based on it but rather use it to exemplify some of A 4

the sorts ol factors that are considered to be important in studying the procedures :

ased for jomthy agreeing upon names to be shared. This particular cxample was B

chosen o reflect several of those factors, Other examples may reflect other factors, ° 1

hut mest did not seem o reflect them as clearly. The next section will discuss a i

ronccchaastive coltection of factors that affect joint agreement on names, "
®

82 S

) "9

- '.*

¢ preceding chapters and how the model as whole addresses the goals presented in

hapter 2.

e
2 A Simple Fxample i
here are many possible factors that may affect the set of names in use in a current °
mtext. There are probably different factors that affect acceptance than deletion.
cletion is considered here 1o be less important than acceptance because @ name
:ed not be used even ifitis ina context, atthough there may be special situations in °
hich deletion is important. - Such a situation nught occur 1l cach object were
lowed only one name in a context. I a name fell into disuse, it might be that the
une itself was causing a problem. For instance, it might be dilficult to use, causing
1 undestrable modilication of behavior of the users. Therefore, it would be useful L'. -_"v
vhave such a name deleted, allowing for a new one. 'Fhe reverse situation in which y
name can be assigned to no more than one object may also cause a problem of
une conflict. In this situation, a name cannot be reused and assigned to an object ®
less it is not naming anything clse. Although deletion is of frequent concern, --‘.3"'_-'._4
ceptance is considered here to be even more important and, thercfore, the focus \
:re will be on acceptance. : . |
hree examples were presented in Scction 3.4, Of those only one involves
spotiated responsibility for choosing names. That one, the conversation between
‘0 experimental subjects, also reflects degrees of acceptance of a name, not found L
the other two. Since the human interaction provides an example of a set of
ctors that may come into play n such decision-making, it will provide the starting
int for the discussion of factors involved in such joint decision making. Those ° 1
ctors are also relevant to non-human interactions. S
. 1
° 1
1 E
i 1
1
1

e — - » " — — —— T—— —— Mg e ma e e aa A

u d c¢1 c2 cn a
u u | d|ct]|ct cl | cl u unknown
F _____ - I [i A A .
d | d d|cl|ct cm| cn d deleted -
ct jct |cilct|cl cm | ¢cn cl candidatet
c2|ct|cl|cl|c2 cm | cn c2 candidate2 °
cn candidaten
| S N N
cn | ¢l fecm|cm|cm cn a a accepted
______ I S o |
alcllcn|cnicn a a
Figure 4-2:An cxample of a table for merging contexts T ﬁ:;
S
. o 4
R
Given this background the fa tors that may play a role in the functions of E
[
acceptance and defetion can be investigated. Section 4.2 discusses a simple example o !
to highhight some of the factors and how they come into play in aceepting a single :
name. A larger dist of factors is discussed in Scction 4.3, Such a list cannot be RS
complete because one cannot predict all the possible uses of names nor the joint ®
decisions among participants of criteria for accepting and deleting. The most that i
can be done is present a well thought out set of likely factors, This will be followed]
in Scction 4.4 by a discussion of how the factors might come into play as parameters !
L I
to the acceptance and deletion operations. A sample set of choices with respect to s]
those factors appears in Section 4.5, Merging is discussed in more detail in Section R
4.6 and the chapter concludes with a review of the model as presented in this and T
. <
. 9
80 .
T
® B

'I“wm. FaRa—— s B ma A B g e e g an et A g e S At g R R o —— —

andhdated candidatek

candidatei

accepted

unknown

deleted

Figure 4-1:An example of a state diagram of the transitions of context entrics

The second means of entering names into a context is through merging. In this
research a proposal was made for a collection of separate namespaces called
contexts. There will be occasions on which it will be necessary to merge two
contexts to form a third. Even if the contexts are parameterized by the same
acceptance and deletion procedures, merging two contexts may be cemplicated. A
table can be used to indicate the state of cach entry in the new context based on its
state in the original contexts. Figure 4-2 presents one such example. In such a table
choices must be made about the state of an entry in the merged context given its
possible states in the two contexts being merged. The fact that a name is in a
particular state in a particular context is the result of the history of its use ir that
context. If the two source contexts contain different states yeflecting diiferent
aspects of the history of use of names, the choice of states in the newly merged
content will be especially difficult to determine, and probubly cannot be handled by

vy genceral procedure.
79

PR 7 Y

syt

determination of how and when a name becomes part of a context. ‘There e two
mceans by which a name can be entered into a context, The first s as a proposal
from one or more participants and the scecond is as the result of merging two
contexts, thus creating a new one. Thus the participants sharing in the use of a

contextare also the proposers of new potential name assignments.

Dyircet proposal of a name by participants feads o recognition that there are many
possible factors that may come into play in determining whether or not a name will
be chosen by a group of communicants. Some of those will in fact be mfluenced by
the form of the name and possibly its relationship to other names that have alrcady
been accepted or rejected. Which factors are relevant o a particular context for
hoth addition and deletion will determine part of the nature of that context.
Therefore the functions of acceptance and deletion must be paramcters of the type

of a context,

When a name is proposed as a candidate for acceptance, it is tramsformed from
being unknown to being tentatively accepted. In this model, the degree of
acceptance or deletion is represented as one of a series of states. That series can be
depicted by a state diagram including transittons between the states. A name may
pass through a number of candidate states before being fully accepted. ‘The
transitions from one such state o another will occur when certain factors arise
during use of the name. For example, it may be that anyone within a group can
propose a name, moving it to the first candidate state. As itis used repeatedly, it
moves through states toward the accepted state. Many factors, one of which is
frequency of use, may affect progress through the candidate states. Perhaps, it can
only be truly accepted when it is used by the organizer of the context in which it is

being proposed. Figure 4-11s a depiction of an example of a state diagram.

18

O S I T I DI S U SR i S e .. PP R R U DU P UL G T LU LA, G DU . Y

® 1
R
."
. <4
4
<
R
[

Chapter Four

Joint Management and Name Assignment:
The Model, Part 11

4.1 Introduction

This chapter completes the discussion of the model. The aspects of the model
presented in this chapter are the joint selection of names (o be v a shared context
and representation of state changes with patterns of usage of names. Chapter
3 addressed the fact tat names have two uses, as handles for accessing the objects to
which they are assigned and as place holders for those object. Since a name s
anything that lits the definition presented there, exactly how a name is contained or
passed between users is not specilied. That is an implementation issue, not part of
the model. The issues addressed here are how and where names are entered into a
context and which names are chosen. Although these issues involve possibly
distributed decision making, for simplicity it will be assumed that lack of
synchronization and accessibility are not a problem. The issues of synchronization
and multiple copies will recur in several places. The problems discussed in this
chapter involve agreement at a different level of abstraction from multiple copices of

acontext.

The problem of name selection can be decomposed into two scparate problems.
[he first is the determination of which names are proposed for entry mto a
particular context. The naming facility puts no restrictions on these choices other
than requiring that names fit the definition of names in Chapter 2 and they are
supported in the implementation of contexts and aggregates. ‘They are solely the

responsibility of the proposers of names. The second problem of name selection is

77

Y

3

]
.9

and successfully. Chapter 4 will return o the scahorse example in discussing in
detail the problems of candidacy and joint management ol names. ‘These are an
important part of the proposed mechanism and therefore were separated in crder o

give them a more thorough discussion.

bl b o d o

15

LML ST UL S . WL ST NI ST ST VA AT ST VEIY VLR TP PSP T AP VA AP UL . DU P AP AL IO AL AW R I, DS PN AR VS T

compared with the current context. The architects and designers of Multics were
aware when this mechanism was created that there is a potential for incorrect
resolution o names, but it was decided that that cost was worth the benelicial
tradeofl. Once in a great while, the mechanism surprises a programmer or user, but
in geacral the mechanism provides the desired and expected behavior. The same
tradeofT will exist in the mechanisms proposed here and the same choice is made.
Theadea missing from the KS'T s any representation ol participants, since by design

there was only one shared context and participation was not an issue.

In the catalog of R*, a distributed database management system [29], Lindsay made
a similar choice. In that case, cach user at a site has a set of single component
nicknames. A system name consists of four components, the creater’s name, the
creator’s site, the creation site, and a name for the object that is unique when
combined with the other three components. [T any of the first three components is
not specified there are mechanisnys for choosing default names. In addition, if only
a single component name is specified, the user’s local table of synonyms will be used
for possible name translation prior to any other defaulting that may come into play.
In this casc, the system-wide catalogue that translates system wide names into
objects is a single shared context. The private, local synonym tables provide private
views on that. In addition, another mechanism, the defaulting mechanism s
imserted in the middle. 1t provides a non-naming function, in tcrms of naming as
defined in this research. The combination of mechanisms in R* as described by
[indsay provide a tradeoff similar to that of the Multics KST. Again, translations
will be made using a common table, with possibly undesirable effects, but in most

cases acceptable and cven desirable effects,

These three examples point out that not only does the model describe patterns of
human naming, but also choices similar to those of this research have been made in

other computer systems with similar tradeoffs. The choices were made knowingly

14

A ACER AT B JER it iate. Shpe ame-o it el Sk Suni g U SIR e g s 4 PR— - i St and

11 sortol like a head on i, an animals head, sort of like a horses head
LI horses head

1.1 two points on the top

L sort ol like it's got two points on the top
L1 aseahorse

LI and it comes real narrow at the bottom
It hke ascahorses head

2.1 same seahorse

3.1 scahorses head

31 scahorse sort ol thing

4.1 scahorse

5.1 scahorse

6.1 scahorse

0.1 scahorse

6 seaborse

6.1 scaborse

60 seahorse

T seahorse

7.1 scahorse

Tl scahorse

8.1 scahorse sort of thing

.1 seahorse

91 scahorse

10.1 scahorse

Figure 3-3:Example of joint sclection of a name

entry in the scarch rules. When a name nceds resolution in the process and that
namu is not in the KST, another rule is used to resolve the name and then an entry is
made into the KST. From that point forward, any reference to that name is resolved
in the KST, assuming the KST has highest priority in the scarch rules. Thus all
occurrences of that name in any segment used in that process will be resolved in the
same way. The scarch rules can casily be compared with the environment of an

aggregate and the KST, when it is at the top of the list in the search rules, can be

73

PR LI, SO SR ST TR S S-S WU S WtV YOS . WL, S-Sy T WUNE W, S

Lidh A e da ' 0 -0 e ud aodh abe vy

'
e

.
~ g

4

.
N
' ana

[
. P
. .
ISPy

v
'

o e »
‘alale e

A s a’atasatas aa s all

CEREEI e gt Sa Jren G i O EBL'E IRG Lrn St M ae e Dol ot s ae dawn Sura St S A i S T JRdb T Jhalh Al S S

to study the sorts of names that were chosen and the procedures by which they were
sclected. The example chosen s in Figure 332 The Arabic numerals refer 1o page
numbers of the original obscervations and the Roman numerals wdentify the subject.

The page numbers were included to indicate the distribution of the references.

Considering this example in the terms the modcel presented in this research, the two
subjects have a shared context predefined for them., When thetr discussion s
complete it will contain names for all the objects shown (o them. In addition, cach

has a private view ol the shared context. Perhaps, subject | was recently on a farm

~und thercfore a context delining farm animal names may have been high on the

cnvironment list for this subject. On the other hand subject H may have had
nothing unusual occur recently leading to the suggestion of "horse’s head™. (Sce
Figure 1-1 on page 21.) In this example, it is clear in addition to the shared context
used for defining names for the figures being shown to the subjects, they assume
that they have other experiences in common, in this case cxperiences that would
give them both the knowledge of the shape of both a scahorse and a horse’s head.
Those experiences may well not be shared experiences, but cach will have contexts
in which those names ar¢ defined and the assumption is that they are defined in
similar ways. Before the series begins for these two subjects, they will have some set
of contexts that they will bring with them to the interaction, those contexts forming
their environments, The shared context will be empty until they begin delining
terms. The negotiation process through which they go will be discussed further in

Chapter 4, in considering how agreement on names is reached.

The Multics Known Segment Table (KST) [37] was described earlier in Section 2.4.

Normally, when a process is initialized the KST is empty. It is generally the first

9'I'his dialog is from p. 13 of Carroll [7]. 1tis between the sccond subject pair and is discussing the
figure labelied B by the experimentiers.

72

VIV I

oo

A,

Y VAT S G WY RIN T

L -

’
St b d ol

i

fact that updates o a shared context need not occur until the user next sees the
context makes carcful and immediate synchronization of multiple copics
unnceessary. Finally, cach user will have a private set of names managed in a

private or basic aggregate. The current context ol that aggregate is not shared.

3.4 FExamples of Uses of Contexts and Aggregates

With the delinitions and discussions of names, contexts, and aggregates in place, a
presentation of how they can be used to deseribe several existing situations is in
order. Three examples are discussed here. They will also reappear in Chapler 4.
The three are a conversation between two people, the Known Scgment Table in

Multics mentioned carlier, and the cataloguing facility in R*,

The particular example of a human interaction used here is onc of a large number
presented by Carroll [7). Carroll was using data collected by KraussS, although it
was analyzed further by Carroll and his colleagues and presented in the Appendix of
Carroll's work. The situation was as follows. Eighteen subject pairs were observed.
For cach pair, the two subjects were arranged so that they could not sce cach other,
but could communicate. They were shown a collection of graphical patterns in
different spatial arrangements for cach of the two subjects. The subjects were to
identify jointly all the figures. The complete conversations were originally recorded.
Carroll and his colleagues extracted all the references to the figures, sorting them by
reference to each figure, resulting in 212 different situations. The analysis of this
data presents the subjects reaching an agreement in most cases about a name and
then later using that name, Just one of these will be presented here to exemplify

some of the procedures of joint definition and use of names. Carroll used the data

8f\cu»rding to Carroll, these data were originally discussed in the literature by Krauss and
Weinheimer [21], and later again by Krauss and his collcagues in {22, 23, 24]

71

twice in different aggregates create two identities as different participants. Ths
latter atternative allows the user of the context o distinguish between the two

aggregates,

The final implementation issuce o be addressed here relates o inttialization. In
addition to the discussion related to contexts, one must consider ow a user gets
started. The proposal here is that cach user start with some basic aggregate that is
the private world of the individual, That private aggregate would contain a current
context of private names, In addition, the individual may want to include more
reeent sets of names in the environment of that aggregate. 'The environment of the
user’s basic aggregate may change more frequently than most other environments
reflecting recent experiences. ‘The sct of contexts in the environment may be fairly
stable, but their arrangement into rules may vary. In addition, although this was not
discussed carlier, an enhancement o the creation operation for aggregates would be
1o insert a single context, the current context of the user’s basic aggregate, into any
newly created environment. In the clectronic mail facility, the first time someone
uses the facility a basic aggregate contatning a private, unshared context is created.

When a new aggregate is created it is completely empty.

To summarize the contents of this scction, an aggregate is the only interface that the
user has to the naming facility, although it is composed of contexts. The aggregate is
not shared, but consists of one jointly managed current context that is the focus of
maost of the activity in the aggregate and a private environment within which names
used in relation to the current context but not defined there may be recognized. In
addition to the operations provided for contexts, the only additional opcrations
needed for aggrepates are those to manage the cnvironment. Aggregates can be
named using the naming abilities of aggregates themselves. In addition, since from
cach user’s viewpoint a context is in exactly one aggregate, the context nced not

have a name separate from the name of the aggregate in which it is contained. The

70

T . e . e e e oo

METRPLE AP P S Vel Wi Vot SN WAL m RN TP . "'i;_\.""L"'-". L UL P L S, S U L O LU, Sy

N ——

v
1
. <
*]
4
]
o
®
L
LA
4
y
-4
4
<

—— e T radn wamrne aerode o dan Sen Jaase Maosinnie e o et St el et it Andt BaiRciie S M AC MR A AR AT M A A S v v

An aggrepale reflects the owner’s private view of a shared context. Itis possible o
use that advantageously by recognizing that changes to a private copy of the shared -
context need not occur until the owner of the aggregate actually uses the context.

Therefore, delaying such changes is feasible. This allows for a rclaxation in

synchronization of the multiple copies ol a context with the understanding that such

detays in updates not be visible to the owner of the aggregate. The clectronic mail
facility takes advantage of this by having the bearers of new information be the
messages themselves. Updates to a current context only occur as new mail items
containing any new information are rcad. Other synchronization mechanisms are °
possible and can be based on the medium of communication. What is important (o
note here is that itis not necessary to provide any form of update atomicity because

the Tevel of cooperation among participants is not close. S

Naming of aggregates is the sccond implementation issue. In the discussion of
contexts, the suggestion was made that contexts be named through the naming
mechanism. The samie holds true for aggregates. There is a further guestion related
o naming aggregates and contexts, that of whether separate names are needed for
aggregates and contexts. ‘The approach that is taken in this rescarch is that a context

can be named simply by identifying it as the current context of some aggregate.

This implies that a context can be the current context of at most one aggregate for
cach participant involved in sharing the current context. It also implics that a .:'_::"‘;‘;""

context cannot be divoreed from its aggregate. An alternative would be to allow a P

user of the naming facility to create a new aggregate that would have a current ¢
context that was alrcady the current context of another aggregate owned by that
same user, but having a different environment. Uses for such a facility are not
obvious and it therefore adds unnecessary complexity. Such a facility is available in .

the clectronic mail facility, but no use was cver found for it. If a use is found, a

cleaner solution to the problem may be that the user who wants o use a context

69

.. .
. AT e et - BN ST

S - S e A S - D S N D
RS . . [. B . .. Pt e T A e T e a N P R S R R T T » et et T e e
et Al s sl 1 ala’a latalatalatlata'alatalaten allsde s adec S el R s S FE SRLTIOR S0 WO V)

L

clectronic matl implementation presented in Chapter 5. Because

incoming mail might have been gencrated using o mail program not ,
implementing aggregates and contexts, the untranslate helped provide the o
user with a more uniform interlace. The add_aggregate operation also

allows the user to assign the incoming message o an aggregate in order

WY yrrryvrvvw

ey
0.
'

v

that the untranslation operation occur in that aggregate.
3 S
add_participant — proc (aggregale, participant)
This operation is identical to the operation of the sume name for contexts
exeept that 1t adds a participant o the current context ol the aggregate
provided.
ol insert rule = proc (aeerceate] tule 2. agereoate, e
} imsert_rule = proc (aggregatel, rule L aggregate?)
1 This operation aliects aggregatel, by inserting the current context of
aggregate? as a new rule at the specificd number. The reason that an
, ageregate 1s specihied for addition is that it would be possible, as will be
o pulcq in the implementation discussion, to name only aggregates and ®
{ identify contexts only as the current context of an aggregate. In order for
' this operation o succeed the current context of aggregate2 cannot be in
some other rule,
add_to_rule = proc (aggregatel, rule #, aggregate2) °
This operation is similar o insert_rule except that it adds the current
context ol aggrepate? o the specified rule in aggregatel. Again, it does
not succeed if the contextis already in another rule.
Ihe additional operations needed to make aggregates usable are listed in Appendix
A2, These operations include a selection of operations for management of the
cnvironment as well as those operations inherited from contexts.
°
Implementation [ssues
Fwo of the issues discussed with respect to contexts must be reconsidered in
discussing aggregates, The firstis the synchronization of copics of a shared context,
: . L4
cach of which s the current context of an aggregate. The sccond is naming
aggregates, Inaddition, a different form of initialization must be considered. :
®
68
°

S . TR - WS ST S NPT T IV TR IOU SO S U U NS S i it e iesinecm e S dme e decscon B

DO . AR ASM A Yt

o

Pa—— - o ” — ———— T e T W Y T ——TT VW o o

4.3 'actors in Joint Management
Given the five factors that played a role in the example presented above ol two 4
participants agreetng upon a shared name, a larger sct ol factors will row be

considered. ‘These factors are derived lrom a variety of sources and modifications of

observations about them. One obvious source is the work by Carroll [7, 54, The

L]
other major source is information that is considered important to record for liles in
various file systeras. Initially in this chapter a distinction avas made between the
content of a name and the mechanism by which agreement is reached in sclecting
L
the name. In fact the two can be closely tied to cach other.
lcactors:

-The user’s relationship to the group: ‘The user of a name may play an .
important role in reaching an agreement on a name, ‘The user may be in R
some sort of either dominant or subordinate role in relation o the .
recipients ol the name. As will be scen in the programming support R
civitonment, a librarian may have special privileges when it comes o _
detining names i a shared context, while the individual programmer " ®

may only be allowed o make suggestions to the librartan,

I'he recipients’ relationships to the group: As with the user of a name,

the role ol the recipients may make a difference as well, For instance, it

may be that, 1if the dominant participant is among the recipients, the T e
usage will carry more weight i upgrading the state of the entry in the

current context than 1 only subordinate participants see a name. In

addition. the number of recipients may be significant.

-The application’s usage of the name and relationship to other o
applications: by the name s used, by which application, may
determine how much weight the usage of a newly proposed name or a)
name i a candidate state will have, Tt may well be that a context is used o ‘-'_“.
by several applications, such as once that is uscd both for source code and ‘
compited code. Tt may be that 1o proposing a new name for source o
code, agreement is needed among the various participants, but once thid
has been decided. naming a compiled object that s derived from such a
source code object can be done without any further negotiation, In
addition. an application program may use names in various functions,

83

some more tmportant than others. This factor may be tied closely to the
factor of previous choices.

Time of usage: ‘The time at which a name is used may have an effect on
its state. For example, it may be that at certain times of the year, usage
becomes much heavier and, in order to avoid delinition of many names
that will not be used much again, this fact may influence the way the
other factors are taken into account.

Number of uses: This factor may alone be the most important. In the
cxample the word “scahorse™ was used in conjunction with other words
four tmes alter its original proposal before it was accepted. In the
clectronic mail implementation, number of uses is the sole criterion.
This factor may take on numecerical values up to a limiting value. In
addition this factor may be used in conjunction with others such as the
uscr or the recipients.

I'requency of use within a period: This factor has two important aspects.
‘The first is the frequency of usage. 1t may be that a name that is used
once a day is less likely to be accepted than a name that is used once an
hour. The other aspect of this factor is the period over which the
frequency extends. [t may be important that a name not only by used at
least once an hour, but also that this usage pattern be maintained for at
lcast two days, or some similar requirement. 1t should be clear that this
factor cannot become relevant until a name has passed the initial
proposing stage and has become a candidate for acceptance.

Mutation: Mutation was mentioned in the discussion of the example in
the previous section. There identification changed from comparison to
an animal’s or horse’s head o a seahorse’s head to a scahorse. These
changes are not very great. 1 the changes had been less closely related
to cach other, perhaps more uses or more negotiation would have been
nceded to reach agreement. Mutation is also related to the next factor as
well.

Relationship between a description and the final choice of a name: If the
original description was "like a scahorse™ and the final name was
"scahorse”, arriving at that agreement might be casier and quicker than
if the original name was "like a horse’s head”. In turn this latter might
be casier than if the original had been "like an animal’s head”. Carroll

84

‘{
«
4
e
4
P T T BN V> T S P P PR PSR, SR St S T T i U PR PPN A Sl S Wl S-S S - VSR . % " VPR TN DS AT P T ‘-L

==

B}

p— RRE i s Sagh e ot g e A eri Sh 00 Aot AR v et S RS pafiaradint Al

analyzed the 212 different joint identifications presenting a set of
conclusions about possible strategics used Lo arrive at a name given a
description. He also analyzed the data for number of occurrences of
cuch. The following is simply a list of them in decreasing order of
frequency:

1. The Whole-Description Strategy in whi<h the whole deseription
(which may be asingle word or small number of words) 1s used as
the name,

2. The Content Strategy in which the final name comprises the
content of the original description.

3. The Content-Noun Strategy in which the major noun of the
description becomes the name,

4 Minor Literal Strategies in which the name finally chosen plays a
minor role in the inttial description.

5. Nonliteral Strategies into which all other examples that reached
agreement on a name fall. This includes strategies such as use of
synonyms or other semantic relationships in combination with one
of the previous strategies.

Depending on which strategy is bet g used in arriving at a name, the
period of negotiation before aceeptance may be shorter or longer. This
fuctor, as many of the others, is likely to be used in conjunction with
other factors.

- Previous choiees: This factor was mentioned in the example. 1t is based

on 1deas both of Carroll [54] in his work on human factors and
obsenvation of operating systems throughout this rescarch. Many
systems provide for similar character strings 1o be used in situations to
indicate relationships among the named objects. In addition, Carroll
stiggosts that nanies displayving what he calls congruence are casier for
people to handle. What Carroll is describing is complementary terms, of
opposites, such as using the term "down™ rather than "return” for the
motion that is the opposite of that Tabelled "up™ or in the electronic mail
example using the names “sender™ and "recipient” rather than "sender”
and "reader”.

85

- N .- - P T S e T T
PRI A S WS SN PUNST RPN ST S Sl S W SLUs WL S S P TSP T R L P

U N WA W A DA WY

T Y

Lo 4 .

Dreciontne et

T — T pa e e S adir JOnh e sl M S e atus cods et aae ame -

- Sharing in other contexts: This factor was also discussed in refation (o
the example. IF the proposer of a name and the recipients of the
proposal recognize it from another shared context, perhaps it should be
more casily accepted than il the recipients have never seen the name
belore.
‘Ten factors have been suggested here. In different situations different factors may
be more or less important. In the example only five of them were identified. The
proposal in this research is that the lactors be specilied on a per-context basis. In
lact, the proposal here s that the type context not be a type but rather a type
gencrator and that the acceplance and deletion factors and their interrclationships
form (he basis of the parameterization. Paramceterization is discussed further in the

next two sections.

4.4 Parameterization of Joint Management

This scction addresses the means for using the factors listed in the previous scction.,
First, the implementor using the context type generator must understand how those
factors will be evaluated by the context type for both the acceptance and deletion
operations. In addition, the implementor must identify the states through which a
name may pass in moving from unknown in the context to perhaps accepted as part
of the context. The factors may be carainal numerical values, ordinal values, binary
(true/false) values, based on a table of values, or related to other previously stored
information. The finite state representation of how these factors affect acceptance
and deletion must also be defined. They will result in a diagram such as Figure 4-1.
Both of these were done in the electronic mail implementation and are presented in
Chapter 5 with the state diagram in Figure 5-6. For now, the nature of those factors

will be considered further.

The relationships among the uscr, the recipients and the rest of the group are likely

to fit into some sort of ordinal arrangement of the participants. A simpler

86

e e
. o N e

B
1

Ak st taain,

ot

st

RN . .
P .
UL U SR W B S ST Y 4

VAR B O

ST T T Y W Y

WP U IS

S
- & N ’. Ca .. .: g
A'.'.'_‘_L_“_-’_

Y

mf,v.r‘ﬁ”r“wr‘ — CABE o cams s gmar

representation of information about the recipient. is a count of the number of
recipients without regard to the relative importance of them. In addition, if -
different apphications have different effects, this will best be represented as a relative
relationship among the applications. One is most important, has the most effect,
another has the second most, and so on down to the least effective. 1t may be that e
hese can be reduced to binary relationships by recognizing only two categorices,
those people or applications that have more cffect and those that have less. In the
simplest case, all participants and all applications are ol cqual importance. In this

case, a count of the number of recipients may still be a factor.

The next three factors, time ol usage, number of uses, and frequency ol usage within

a period, will all standardly have cardinal values, although the latter may have

several possible values for different periods. [t may be that approximations are
made for cach of these. Time of usage may simply be categorized into one of several
periods, €. g. prior to some time, during a time period, or after a particular time.
Number of uscs may be used as a value up to some limit. This is what was done in . ®
the clectronic mail system, where the limit was three. Finally, frequency of usage .

within a period may be recorded only for one fixed period (5 minutes or one hour or .

onc day, but not all three), and again there may be a limit. In addition, there may be g . r
an upper or lower limit on the frequency: c.g., if the frequency is more than five per - _.:
time unit, how much more may be unimportant. o
RSN,

Mutation and the relationship between a description and the final choice of a name hd 1
arc probably the most difficult factors to which to assign values for computation. | : %
One might attempt to assign relative numerical values, but the basis would have to 1
be some heuristics. For this some of the techniques developed in the Artificial ° j
Intettigence community for recording the relationships between words and concepts RSN
should probably be ecmployed. Unfortunately, more is needed than simply to record)
rclationships. In addition an assignment of relative importance to various of those | '.' 1
R

87 R

. - . P . PRE . A A |
m e s e T T T T T T T s e Cat el A e e e i AP STV YT WUt L D]

T —_— o A Bt B i T R —————— i e At s it it i~ e St At S

relationships is needed and one needs the capability for adding new, yet unknown
relationships and understanding how they fit into the previously existing schemies.
In an opcrating system environment where cfliciency ol operation is critical, these
sorts of activities arce likely to add much complexity to the computation and

therctore reduce efficiency.

The effects of previous choices may be evaluated in different ways. For instance, if
at Jeast the first three charvacters are the same as another previously accepted name,
it might be that the boolean value True will be chosen for this factor, or False if
fewer than three characters match. One might provide an absolute value of the
number of characters that match with a lower limit, so that at least two must match
hefore this factor comes into play. Congruence is more difficult, and probably
involves a dictionary in order to provide recognition of opposites. As with the
semantic relationships discussed above, if such operations for acceptance and

deletion are included efficiency will probably be greatly reduced.

The final factor is sharing in other contexts. This may be given relative values based
on how many people know the name in another context and the state of the entry in
that other context, or it may simply be a binary value of whether the name is known
to all and acceprted in another context. Although this sounds like a straightforward
computation, in fact there is a complication because the time and circumstances of
the computation will be unpredictable and may be variable at different sites. For
example, if the shared context is implemented and exists as a single object (whether
or not there is replication), its state will be consistent at all times, This was not the
case in the mail system. Multiple closely related versions existed, one for each

sender or recipient. The updates on them were done independently. In a situation

such as that, the state of the world may be different at the time of cach update and

therefore the results of using external information vary over time. In the mail

IR
2 2 'y 2 e

system, that was acceptable because distributed information was not used in the

T
i

38

v
[PO G S U W)

A ISP P AL AP AP UL P LI AP . S, 1 O I 1P PP r -P IPUE P VS D R RN O JE SO S W S wli P . ’ |

—— A P — T T Trr— PRI wain . St el

process of defining names. The user’s expectation is very important in such a
situation, since the users believe that they are communicating and reaching
agreements with cach other. The naming facility is unacceptable if routinely uscrs
belicve that they have reached an agreement, only to discover that there are

differences of opinton on this.

4.5 A Sample of Choices

This section presents a selection of factors that might be used for human interaction.
These choices provide an example that might appear in the implementation of a
uscr interface. Therefore such values as times and number of repetitions are chosen
to fall within common human understanding. In another situation dilferent choices

might be made.10

Of primary importance is the number of uses. Because of Carroll’s observations that
small numbers of uses in fairly quick succession are most common in human
conversation, the number four is used. The period for humans should be on the
order of one day. This would require keeping a minimum of four timestamps for
usage. An assumption is made here that all participants have equal status within the
group, and that as with the clectronic mail system, cach participant has a private
copy of the context, the set being kept in approximate synchrony. ‘This means that
as cach participant sces four instances of a name within one day, the name becomes
accepted for that participant. Since this is application independent, ncither the

factor of application nor time of usage is included. Of the remaining four factors,

10'l'hc only test of such choices in this rescarch effort was made in the implementation of the
clectronic mail system. ‘The choice there was kept especially simple, but implemented so that others
could he substituted casily if the occasion arose. Due to limited use of the software, little was learned
about this aspect of the implementation and it was felt that alternative decision making mechanisms
could not have been tested well enough to be of value.

89

kAl Sadic

T

PP IPY

T —_—— L fnan ducte st e Ja-an SO jbas S et Bei daas S i TV T Y

three are not included here because of the complexity of including them. These are
mutation, relationship between a description and the final choice of 2@ name, and
sharing in other contexts. “The final factor, previous choices, can be included in a
limited form. For example, given a name with a particular extension, the choice of
the same name with an extension chosen from a imited set of choices might be
accepted after one use, 1f the first name were already acceepted. In order to
implement decision-making based on this set of factors, the only additional

information beyond names and states that is needed is timestamping.

There are two further issues related to what happens if there are not four vses within
one day. In humans minds, a name will slowly losc ground, be forgotten by degrees
over time. As it is losing ground further uses will revive it. Forgetting secems to
happen more slowly than accepting a name. Therclore the proposal here is that the
acceptance function work in cight hour intervals, but the final deletion step be an
aaditional 24 hours. The final issuc is how a name can begin to fade once accepted.
Here perhaps a one week period might rellect reality. 'Thus the state diagram might
be drawn as in Figure 4-3. It will be noted that no distinction is made between
unknown and deleted. Again, this may be a simplification of reality for the sake of
clficiency. It must be remembered that the choices made here were o demonstrate

an example.

As mentioned, in addition o recognizing which factors are important for both
acceptance and deletion, the implementor must determine the various possible
states of a context entry and which factors will affect which transitions between
states. Feasibility would dictate a simple sct of states and transitions. This, in turn,
probably mcans that in any implementation only a small number of factors can be
considered. Not only must programming be done, but the computation must be
done, and for many of the factors, historical information may need to be stored,

such as the identification of all previous users of the name or the times of previous

90

T

" b

Y . .v..
bndeadodial ot a'h

hat 200 B Arnie-e aven Susmr] — e R R Sagi Jaeth il e Al o diIh Sl Aol Mbak S aiah il A A Ll DA A

@ (a) tirst use !

(b) use within 8 hrs. |

unknown/ (c) atleast 8 hrs. since last use |
deleted (d) atteast 24 his. since last use

| {e) at least 7 days since last use

Figure 4-3:A state diagram for acceptance and deletion

uses. 1t is clear that if naming is too incfficient, it will not be useful to potential
users. Therefore in addition to the goals of providing a naming facility cfficiency

must always be considered.

4.6 The Merging Problem

In addition to determining the states of entries in a context based on use of names
and other related information, there is one further situation that may determine the
states of the entries in a context. Consider the situation in which a context is created
by merging two previously existing contexts. ‘The opceration that achieves this
merging 1s another parameter to the context type gencrator. It determines the
detailed nature of the type of such a context, although it will be used at most once in

the lifetime at the ¢creation time of a context.

91

[Y - BT VI VNS VLAY L. S WA S VAP SO VoA S PO S SRl A - U TR UL Ui Sl S S Ll U ST W UL ST S VUL AT W I W W . O WS W.

’ . .
. St
VO P

PR TP

1]

o

*
PE S SION SPLI

'
B

y

‘A ol

e e,
PO

.

R
A
el
PRI TN

The problem can be separated into two subproblems, the solution of one of which is
managcable and the other is open ended. The simpler of the two is merging (wo
contexts of the same type, that are parameterized by the saine operations. In this
case, although there are many decisions to be made, the problem is tractable,
Unfortunately, if the contexts are parameterized by different implementations of the
acceptance, deletion and merging operations, there is no basis of agreemerit from
which to begin in gencral, 11 such a merge is to occur, a special procedure must be
created for cach particutar pair of context types for which it is needed. In those
cases the same issues must be addressed as will be discussed below for two contexts
ol the same type, although the final choices will be designed for the particular pair

of context types.

A number of issues must be faced by the implementor of the merging operation is
the determination of entries in the new context and the state of cach. There are
several factors that may be taken into consideration. First, the two contexts may be
considered on equal standing or one may be considered more important than the
other. Wedin this knowledge, cach entry in cach context will be considered. For cach
name tanslation, consideration must be given to its current state, whether the name,
the object, or the full entry exast in the other context, and the relationship between
the origma, contexts. As mentioned carlier, in some cases additional information
such as timestamps of uses is saved for the acceptance and deletion procedures.
I hat mformation may also need to be merged or at least be used as part of the
merging operation, although this adds complexity. In the case of merging, a table
can be drawn up, as for example in Figure 4-2 based on the possible states of names.
In the case of that figure the two contexts were considered of equal importance. In

addition, the groups of participants will simply be joined into one.

Fhiere is a further problem of the creation of the environment in any new aggregate

formed by using the new context as a current context. There are a number of

92

bt Dl cer et e el et e——— R I S

i h A b

ossibilities here, 1 the participant and owner of the aggregate was not a participant

1 cither of the original contexts, then probably the environment should default to

hatever it would for a new aggregate. 11 the participant was a participant in one of

1w contents, then perhaps the environment should be that of that carlier shared
antext. Finally i the participant shared in both ol the original contexts, perhaps
oth should be reflected in the new environment. eis not clear in this latter case
vactly how the environments should be merged. More importantly, it should be
smembered that the environment is a reflection and representation of the
wdividuality of cach participant. As such, the recommendation here is that it
yould not be created automatically by the same mechanism for all users sharing the
ew context. Rather, nothing should be done other than any defaulting that the
wdividual may have specified, thus leaving the management of the environment the

ssponsibility solely of the individual.

he discussion of merging to this point has not considered what problems might
rise from multiple copics of one or both contexts in a merge operation, 1 all copies
fcach contextare in synchrony there is no problem. Consicer a situation in which
1e copies of one context are not synchronized. Merging occurs by merging the
cal copies of two contexts forming a third local context. The guestion that must be
Idressed is what happens if a context entry is in one state in one copy of the
ntext and in a different state in another. The merging tables presented in this
‘port have a feature important to this discussion: an entry that exists in any state
e context cannot become unknown through the merging procedure. This mmeans
at entries cannot disappear. In addition, entrics do not move farther from
‘ceptance through use. Now the merging of focal copies can be reconsidered. 1f an
1wy is accepted in one local copy and only a candidate in another, the result after
¢ merge may be different in the new local copics, but that is an acceptable

mdition. In the worst case, if the two local copies being merged are not up to date

93

L R SRR P LI, JEP SR -l s

! enbdh,

Cotatatalaa il Lt

——— TR E———— bl B i el el e D

and an entry 1s unknown in both, but known in local copies clsewhere, the
mechanism for proposing names can be used o bring the newly created local copy
up o date. Ian assumption is made that an entry exists, but it docs not, the human
recourse is to explore further by asking for further explunation or definition fiom
the source. A similar procedure can be used in the world of contests and aggregaltes,
as it might be without a preceding merge operation. 'Phis analysis of merging
contexts consisting of unsynchronized copies of the contexts Teads to the conclusion
that such a merge operation poses no new problems. “The problems are only those

ol adding names and merging contexts composed of syncrhonized copices.

4.7 Summary and Review

This section concludes the presentation of the model proposed here as a framework
for a naming facility. As such, the scction will briefly review the problem addressed
i the research and those concepts defined. In addition, a summary of the
framework itsell s presented, prior to a discussion of how the model addresses the

posed problem,

Names are defined in this work as objects with an ¢cquality operation that stand for
other objects. The purpose of a name is cither W provide access to the object to
which its assigned, if that is possible, or to act as a place holder for the object. The
cquality operation tests for the cquality of two names, not cquality of two objects
namced by different names. The goal of the research is to explore the possibility of
designing a naming facility that supports that definition of names, provides sharing
and communication within federations of and by means of those names, and is
implementable. The cquality operation on names is needed in order to implement
access of named objects through a naming facility., A federation 1s a loose coalition
that may not be active at all times and that allows for both cooperation and

individuality among the participants. Before proceeding with a review of accessing

94

A e a2 A A oa’ o s s s A PSP Y Vi LA S AP UL W S WA Wl Gl U WU . 2P

-

-1

BT
ey

Lttt e
LD Y AP YV U Y S S

A

scts and providing sharing and communication, feasibility ol implementation can
dismissed for now. The purpose of Chapters S and 6 is 1o investigate

dementations in two particular domains.

> model proposed as a framework for a naming facility presents the user of the
mng factlity with a collection ol objects of a single type, aggregate, as (he sole
rhace o the naming facility, An agpregate provides its owner with a privale view
1vshared namespace, known as a context. ‘The shared context is known as the
rent context and provides the main focus for name resolution. In addition, cach
regate has an environment, a private list of partially ordered alternative contexts
e used i the individual’s case 1if a name cannot be resolved in the current
text. The type context is also newly defined in this rescarch. A context also
sists of two types of information, the translations from names into objects and
1w means of adentifying the participants sharing the particular context. 'The
wlations can be inone a series of possible states ranging from just proposed as a
didate 1o fully accepted as a legitimate name to deleted and theretfore not
epted as a name for a particular object. Further, those factors relesant o cach

text in order 1o move name translations from one state to another or enter them

y one inttially must be considered. This information may take the form of

cedures for accepting and deleting context entries as well as merging contexts to
na new context with predefined transtations. “The definitions of aggregate and
text incorporate exactly the definition of names presented in Chapter 2,
refore supporting that definition in the naming facility framework., An
sstigation of sharing and communication in the face of federation was based on
nan numing and provided a sct of cight obscervations considered here o be
voals. Tt worth reflecting on cach separately in order o explore how the

nework supports them.,

1. Communication: There are two uses for communication, The first is to
share the use of names, to transfer names among users. The other is to

95

hdead L

A

Lg EEE

tansfer information used o manage shared namespaces or contexts,
For both of these the federation assumed as asystem maodel provides the
basis [or communication on common ground. What the medium of e
communication is, nced not be specificd here and will vary from one
system to another, The important factis that contexts and aggregates are o
designed in such a way that names and information passed through that R
medium of communication can be incorporated into the contexts and
apgpregates. Furthermore, the participants shartng a context must believe ®
that they have reached some form ol agreement. Negotiation using the
medinm of commumication will tuke place prior to the creation of a local
copy of a shared copy, so that all the participants agree upon the various
details of specitication of a context, such as addition and deletion factors
and procedures and a merging procedure.,

~J

CIndividuadity: The environment part ol the aggregate allows the
individual to make use of personal experiences. ‘The environment
provides for potential name translation in cases in which the current
context of an aggregate cannot translate a nume. This allows the user to
full back on other experiences that he or she thinks may help in such
situations,

V-

3. Multiplicity of names: There are two means by which contexts provide s ‘
for a multplicity of names. First, a context contains relations between
names and named objects. The cxistence of one retation within a
context does not preclude the existence of any other relation between -
cither the name or the object and any other name or object. Second, the Tl
fact that an individual or set of individuals arc participants in one e
context bears no relation to whether any of those individuals participate .
together or separately inany other contexts containing = possibly
ditferent set of relations between names and objects. Therefore the full
flevibility of multiplicity of naming is available through the naming
facility. b

3

J
Y
K
o

APV WS W V2P

4. Locality of Naming: Independent contexts provide locality of naming, ‘
fhe framework imposes no relatonship between names in different Co
contexts or between the contexts or aggregates themselves. Therefore,

) L : °
the naming within one contextis completely focal to that context. 1
S Flexibility of usage: The definiion of a name includes only a o B
requirement of ane equalicy operation. The naming facility also must N
@
)

AD-A154 785 DISTRIBUTED NAME MANAGEMENT(U) MASSACHUSETTS INST OF 2/2.
TECH CAMBRIDGE LAB_FOR COMPUTER SCIENCE K R SOLLINS
. FEB 85 MIT/LCS/TR-331 N@@914-75-C-8661
UNCLASSIFIED F/G 5/1 NL

T i e A A i e e it

.

., .

B s

., .
Y

N R
——

B

-
B D
;T r. TS

'

R I o 2
e .

Y.

- .

=
N
>
==
N
(8]
.

o

I

FEEEEE R

EEE
= 2 IR

o fr
Ll ' _
22 s e

rr
r
e

————
F———
'
2

)
MICROCOPY RESOLUTION TEST CHART =
NATIONAL BUREAU OF STANDARDS-1963-A

_""P e W .

P.
.
..
s

>

have some mcans of associating a name with an object and transmitting
names between users sharing names. Other than these, there are no
limitations on the nature of names, allowing for a large degree of o
fNexibility in the choices of names defined by participants cooperating in -
sharing a context,

6. Manifest nature of names: The users of names arc also the participants
sharing responsibility for defining those names and managing the
namespaces or contexts containing the names. ‘Therefore, the users are
free o scelect names that manilest whatever degree of meaning they :
jointly choose.

7. Usabitity of names: Humans, in the course of normal communication
with cach other, usc names and switch namespaces often without a
conscious thought given to it. In involving a computer facility in such
activities, some actions and choices must be made more explicit because Ce
the recipient or medium of transport of the names is providing some
interpretation, but does not have the capability of a human mind. The
naming facility modeled here provides a simple means of involving a
computer facility in such naming. Namcspaces or contexts are local.
Identification of contexts and aggregates themselves is based on that
same locad naming with the addition of identification of other users
sharing the namespaces. In addition, the translations better reflect
human name definition procedures atlowing for different procedures in
different situations and different sets of states reflecting patterns of
usage. In addition, as will be scen in the next two chapters, the
proposing of names and state changes for name translations can be made
automatic.

8. Unification: There are no restrictions on the types of objects based on
names. Names are not typed and a name can be assigned to several
objects of different types. This allows for generic naming as described in
Chapter 2 which is considered an advantage of this naming facility
model. Itis in sharp contrast with implementations of strong typing that
depend on compile time typc checking, because at times prior to
execution, types may not be known since the relations may not be
known or there may be several. In fact, even at exccution time, if typing
is inhcrent in the supporting system, adequate preparation must be
made for handling type information.

97

RN R S S T S R R G el

.
DRICRERE SN .,‘w.‘.:._.\...‘.‘.._._....<_._ et L T S T A N
Ry S, P IRPC IR I gt /L T T ot Sl T, IV ST T MR- U Tl Tl G D0 S G S P VT PP S SE ON BE.

This concludes the presentation of the model proposed 1o be a framework for a

naming facility. The next two chapters discuss implementation designs in order o

support the goal of implementability and simultancously highlight advantages of

using such a naming facility in those domains.

T T my——————wrT——

Chapter Five

Implementation of Naming in an
Electronic Mail System

5.1 Introduction

Chapter 2 defined the goals of this research on a naming facility in a federated
system. Chapters 3 and 4 proposed a model to be used as a framework for
implementing a naming facility and as such is an approximation to the way in which
humans manage and use names. The implementation discussed in this chapter is an
approximation to the approximation. ‘The model is simplified yet further in the
implementation. {n order to describe the model used and the design choices made
in the implementation, clectronic mail systems and their naming problems must first
be considered in Section 5.2. Section 5.3 then will present the implementation
decisions that were made for this work. Finally, in Section 5.4 review what can be

learned from the implementation,

5.2 Electronic mail

Most clectronic mail systems allow people to communicate with each other using a
federated computer system to compose, send, receive, and read mail. One of the
distinguishing features of mail is that the sender and recipient need not be present
simultaneously in order for the communication to succeed. In fact, in most mail
transport facilitics, if the mail is travelling from one host computer to another, the
two computers need not be in direct communication at the time of the composition

and sending (from the viewpoint of the sender) or receiving (from the viewpoint of

. P UL S R B . e L e el e
LIPS LIPSl S WV L IP U S Ui Uiy Vel WD T S P DT T S TAE W S TR W Sy

LAk o

s

——y P —y MRES s dan s Jt Simset Sesny Shde Siobu Sagi Shdn My s Mind 200 Mt Bhutt™ Sniicd
N T T T R e T e e e S s R s o R CW e T ar T e L e A T R A e

the recipient) and rcz\(ling”. In spite of that, at a bare minimum the sender must be
able to identify the recipient to the computer system, ‘There are further
identifications without which the mail system is barely usuble. First, there should be
a facility for identifying the sender, in order that the recipient understand from
whom the message came. Further, it would also be benceficial il the recipient could
in turn become sender and respond to the sender, preferably using the same pame

used by original sender for self identification,

Figures 5-1 and 5-2 present an example that will be used in the remainder of the
chapter. They are two forims of the same message, the first is taken from the
implementation to be described here, while the sccond, containing only nctwork
addresscs, is more like what the user is likely to sce currently. ‘The improvement in
the former over the latter lies in the names and namc management possible in the
former. These examples will be discussed further below, including a discussion of

choice of names for mail recipicnts, aggregates, and aggregate names.

Before considering an alternative for naming in an electronic mail system, it is
valuable to consider a representative sumpling of naming in other mail systems.
This discussion is based on the five attributes of names listed in Chapter 2:
assignment, resolution, scope of use, unigueness/ambiguity, and meaningfulness.
Consider for a moment the name "Brown. INP@MIT-MULTICS.ARPA" from
Figurc 5-2. It is a hierarchically structured name for a mailbox; the local name is
"Brown" in the project "INP", on the host "MIT-MULTICS" (probably a Multics
at MIT), supported by ARPA. The meanings of most of the components are
probably irrelevant to most of the other recipients and the sender. The identity of

the individual is important and "Alex who is interested in mail" may be more

”ln a storc-and-forward nctwork, it is possible for the two never to operational simultancously if
there arc intermediate forwarders

100

P Y WY P

i B i B CI b et vt S I IR M S e A S A A S A AL AU ML A it A St C LR SERSCR SRR ST S

To: Sandy, Alex

Cc: Chris <chosgd!hasmed!qusavstukmtecg)
From: Randy

Subject: improvements

Aggregate: mail

The following features have been added to the mail program....

Figure 5-1:Message with shared nicknames

To: smith@MIT-CLEANSER.ARPA, Brown.INP@MIT-MULTICS.ARPA
Cc: cbosgdhasmed!qusavs!lukm!ecg

From: rsmith@MI'T-NEWCLEANSER.ARPA

Subject: improvements

The following features....

Figure 5-2:Message with mailbox addresses for names

appropriate for that. The assignment was made mostly be external authorities,
although "Brown" may have been a personal choice. Although the name may
appear in the message as it is delivered to a recipient, in fact it will be translated by
various lower levels of protocols such as SMTP [38], if it is used on the Arpanet.
The name was selected with the idea that it would be universal in scope, and
globally unique. Ambiguous names might allow for sending a message to several

mailboxes for a single user, or for naming a group, such as a mailing list. As will be

101

. Tt e e T e AT A et e T et T el e T e T e Tt e T et e e T e .,
-t At et e, - . - A

. . PEAETE SR Y A e e e T T e
R P I O R Y R T T P PP P AR AR S PO v) oS 2 2 g 2 e o

scen, other approachc . support somewhat different decisions for those

characteristics ol naming listed above,

The Arpanct approach described in RFC 822 (9] (c.g. "MIT-MULTICS.ARPA") is
that host names are the important part of the naming scheme and that they fall into
a global hicrarchy. In fact, RFC 822 specifics nothing about user names within a
host. The structure and management of those user names is left completely to the
local system, and may vary from one system to another. For example, Unix {40, 57]
provides a Nat namespace (c.g. "smith™) with aliasing, both sharced by the whole
system and private to the individual. Multics [37] provides a two-level hicrarchy of
users within projects (e.g. "Brown.INP") and some aliasing. Finally TOPS-20[12],
provides a hicrarchy similar to Multics, but of any depth, based on the directory
structure of the system. The meaning of the components of a user name on
TOPS-20 is simply that cach component is a subdircctory of the directory name to

its left, unless there is none, in which case it is a top level directory.

The UUCP approach [35] (e.g. "cbosgd'hasmed!qusavs!ukm'ccg”) on Unix is
similar to the Arpanct approach in lack of concern about local naming except that
the scheme for naming hosts is different. Again the host name plays an important
role with user name locally managed, but the namespace is neither global nor is it
necessarily hicrarchical. Rather a host name is a route from the sender’s host to the
recipient’s host. The limitations on the number of routes is based on the topology of
the network and explicit interconnection capabilities at individual sites. In addition,
there is nothing that limits a name (route) to a single object (host). A route from
host A to host B may also identify the route from host C to host D and there would
be no problem of conflict, although there might be other problems, such as
discovering or understanding a name of a host. Rcturning to the characteristics
listed earlier, most of such naming is meaningless to both the sender and the

recipient. The structure is that of a directed graph. The names are chosen in a

102

. AT T |
L
AR .

@ .

Wt
o .
. L
e o0 o,
.

distributed fashion. For cach node, someone responsible for it chooses exactly one
name. Use of a particular name for a particular location must be completely local,
although names need not be unique. In many cascs, there are several routes
between two nodes, cach providing a legitimate name with no means of (esting for

identity.

The other three mail systems to be mentioned here include the user’s name in their
schemes. Grapevine provides a hicrurchi.cul, two-layer scheme. Users are named
within registrics. These user names are assigned within the Grapevine system,
Registrics identily administrative domains, that may also reflect organizational or
geographic distribution. The Grapevine approach is to provide a global hicrarchy.,
An example of a Grapevine style name is "Smith.PA", where "Smith"” is the user’s
name and "PA" is the name of the registry, representing Palo Alto. In this case the
name of the registry is geographical and must be included as part of the name in
Grapevine. This means that a user of the name must realize the Smith works within
the Palo Alto region, which may be not only irrelevant, but not a known fact.
Grapevine docs allow a name to refer to a list, thus providing a mailing list
capability, allowing for uniquencss or ambiguity, although name assighment is

managed by an administrator of the registry where a name will be assigned.

The IFIP Working Group 6.5 standard [18, 59] proposes that users be named and
that their names consist of a collection of components that provide what appears to
be a hicrarchy to users of the names. An interesting aspect of this structure is that
the ordering of the components is of no import. Therefore, the namespace may look
like different hicrarchies to different users of the namespace. The names, in fact,
form a global lattice. All share the same set of hames, although multiple names can
exist for any recipient. [n this case, a full set of components must be examined at

cach node which in turn will resolve that part that it understands.

103

LA A e Bt A AL AV aikh oy \.r_F_T" o AT T TN .

Finally, the Cocos project [11] and the related rescarch by Kerr [20] propose that
cach mail recipient be identifiable by a set ol attributes. No host name is needed.
The attribute names are not nested. Again the namespace is global. In both the
Cocos project and the proposals of the IFIP WG 6.5, the idea is that the component
names be names that are meaningful to users, although the components are chosen
and resolved by outside authoritics. In the IFIP proposal, each component is chosen
by a scparate authority, while in Cocos the complete set of attributes is
predetermined and built into the system. In both, the complete schemes are
universal, although in the IFIP proposal a name need not be unique. In none of the
above projects are names sclected by the users, or even in most cases by those being
named. In addition, in most cascs the uscrs of the names have not been considered,
and therefore names in cases other than these last two are probably not very
meaningful. All of these approaches to mail provide for names for mail senders and
recipicnts although none provides the sorts of naming set as goals in the earlier

chapters of this work.

At this point it is valuable to reconsider the assumptions and goals of this research in
relationship to a mail system. First, in terms of mail dcelivery, federation must be
assumed. Even if the user community uses only a single computer, mail allows for a
separation of sender and recipient that matches the definition of federation. When
it comes to managing the namespace used for identifier mail recipients, only the
UUCP approach of source routing12 allows for local namcs, but in this case they
cannot be shared because a name is location dependent. There is an additional
problem in UUCP; when two hosts attempt to communicate each one must have the
correct authorization. The sending host must allow sending to that particular

receiving host and the receiving one to receive from the particular sending host.

lecc Sunshinc [50] and Saltzer ct al. [43] for a more detailed discussion of source routing in
genceral.

104

L S SRR} “ c e v

s, 0, .
P
)

..
-
~ .
-

T e T AT T S
AT . RIS S SR B S e S I S TN S N Y
DA PN P WA W WL, YUl WK WA SORE WO WV W WAl WA YUK uilly WO W VR W SPNE W W W W

Thus the common technique of generating a return address hop by hop during the
original traversal of a message may produce an invalid address. Grapevine and the
IFIP WG 6.5 standard and the newer Arpanct standard [31, 32] all propose
distributing the naming authority, although the responsibility still does 1+« lic with
the users of the names to define the names that they will use as discusse . i carlier

chapters of this report.

The purpose of a mail system is to support communication. That communication
involves both sharing information, such as who the other recipients of a mail item
are, as well as jointly determining the names that will be used. In communication
outside a computer system, people communicating will jointly decide on names, as
in conversation, ‘They should also be able to determine the names they usc jointly
when a computer system provides the medium of communication. People may have
many interactions with each other and may interact on different bases in different
situations. In addition, the same name may be chosen for different people under
different conditions. As a result multiple names are important. As mentioned
before, people do not use globally unique names for cach other. If, by chance the
names are globally unique, they probably are not very useful.!? Certainly in the case
ofl a mail system, the flexibility of using various sorts of names would enhance such a
system for the human users. In addition, whatever mechanisms are built to support
a naming facility must be casy for humans to use. Although the goal of unification
was not achieved in the implementation of the mail system, it could and probably

should have been. The naming scheme is used only for naming people. It should

nCnnsidcr telephone numbers, With their full country and arca codes they may be unique, but it
is not clear what they are naming. ‘They certainly are not really naming people. They arc not naming
telephones, because a telephone can move and can be assigned a different number. "They are not
naming locations, because nunbers can move. They appear to name a particular ocation or sct of
locations at a particular time, with the additional information that such a name is not likely to change
very often. A feature such as forwarding (known as "call-forwarding”) allows a phone number to be
used indirectly on a temporary basis, blurring the meaning even further.

105

bl S Wl S PG 3

also have been used for naming at least aggregates and contexts as well. A separate
mechanism with less flexibility was provided for aggregates and contexts, simply a
flat namespace where cach such name is interpreted relative o the user’s private
namespace. If an operating system with a library of subsystems rather than
particular subsystem were being built; the idea is that users could use the same
naming facility to name people in the mail system as, for example, people in a
calendar system, and any other system in which naming people was ol use as well as

unifying naming people with naming other objects.

The remainder of this chapter will discuss the implementation of the mail system
naming facility in addition 10 a discussion of conclusions in the last section of the

chapter.

5.3 The Implementation

This section describes the actual implementation, beginning with the model of
contexts and aggregates and the user environment. That is followed a discussion of
the operations provided at all three levels, contexts, aggregates, and the user
interface. Finally, a review is presented of those decisions that were made in order

to design the implementation.

Before discussing what confronts the user of the mail system, a briel overview of
those dccisions about data structures and the possible choices discussed in Chapters
3 and 4 are presented here. In addition, the organization of the management of the
information is discussed. The discussion then turns to what the users sces in the

mail system and how it can be used.

Both contexts and aggregates have exactly that information discussed in Chapter

3 and diagrams of them would be identical to Figures 3-1 and 3-2 on pages 60 and

106

. et . - L. e Cam At

PP ST VY TR VLI

v LI
PRGLNEPELPEIT S

e . Lo Nt S e et e et Ve e SO . RERTI KRR
PP U, PRI S S S S S T P D G e e PN SR W SR a

Y

F A e St e st o/ - e L e e s e et e Jiuts e B SR el A S S i A .~

67 respectively, except that contexts do not have separate lists of users and
reservation of names not assigned to objects is not possible in the mail system. The
entrics in a context are more limited than the general form of contexts and
aggregates. Specifically, both the namces and objects are strings. ‘Therelore, contexts
and aggregates themselves are not named in this way. Instead, cach user has a
private hist of contexts and aggregates and their names, ‘The names ol contexts are
not universal or global. A name for a context or aggregate is translated by the
individual using one of those private lists of contexts and aggregates. As for joint
management, mail is used for negotiation. When a mail item arrives with a name in
the aggregate ficld that is unknown, a new aggregate by that name, containing a ncw
context by that name is created. If a new aggregate is created, but a context by that
name already cxisted locally, then the existing context is used as the current context
for the new aggregate. The final aspect of joint management is proposing and
selecting names. Name translation pairs can be in on of five possible states. This is

discussed in more detail below.,

The representations of the objects needed for this implementation are simple.
Names and addresses are simply strings. A context is an unordered set of pairs of
strings. Scarching is lincar because it is assumed that contexts will remain small.
The lists of aggregates and contexts for cach user are lists of pairs consisting of
names and aggregates or contexts respectively. An aggregate has two components.
The current context is a pointer into the context list and the environment is a list of

unordered sets of pointers into the context list.

Due to the pre-existing software used in this implementation, the management of
the naming information was implemented as a separate process. Therefore, sending
a message involves passing the message header to the separate process for possible
name translation and sending it back to the user mail process for verification prior to

passing 1t to the Unix sendmail process [57]. When mail is read, before it is

107

M S W A, WU S R W T L P, A . T . A S SO P T L PO S . S A, L UL L L O

displaycd for the user the header is passed (o the recipient’s name managing process

for translation, Figure 5-3 depicts these activities and the three processes involved.

Send Mail Reccive Mail

user mail
process
—

check
header

user mail
process

header
check tiansformed

header

header
transformed

name
management
process

name
management
process

receive
message

send
message

>

Figure 5-3:Processes in the mail system

Unix
sendmail
process

The user of the mail system has a small collection of new objects to manage. When
a user enters the mail system, he or she is provided initially with a single basic
aggregate, named "basic_a” containing a current context named "basic_c¢" and an
undefined environment. Each uscr of the mail system has his or her own private
version of basic_a and basic_c. These are not shared. In addition, each uscr has two
lists, one of named aggregates and one of namced contexts in which he or she is a
participant. In order to describe the use of contexts and aggregates in the mail
system, Figure 5-1 will be reconsidered. In addition, the operations of listing

aggregates and listing the contents of the "mail" aggregate as in Figures 5-4 and

108

PP P AOUE. VU SO WAL, P W S UL PV Al Tl WA VLU0 W . WP So W W i G VN U U S Wl W U W o ¥ P

Chapter 1, she proposes a library. She recognizes that the names must be shared but

docs not discuss shared management of the names. She proposes what she has
wWentilicd as a naming scheme o address many of the problems inherent in selection
moa programming support environment, Her Library is used o identify
mplementations by means of sets of attributes. Fach attribute consists of @ name
and a value, which may define relationships between objects. ‘The hibrary does not
actually contain objects, but rather points to objects outside the library. The library
is separate from a general filing scheme that would contain all implementations, as
well as all other related objects such as specifications, compiled versions of the
mplementation, and, in fact, the implementations themselves. For all objects
identified in the dibrary there are required and optional attributes. The sct of all
these attributes or subscets of them can be used to identify implementations and

sclect individual ones.

Where this rescarch parts ways with hers is in the definition of naming as opposed to
other activitics. A clear distinction was madce in cailier chapters of this work
hetween information recorded to be used as a name and other information that has
morce to do with the state of the object used as part of a computation that may result
m sclection, There may be situations in which these two appear to be similar, but
the support mechanisms to use the two are dissimilar. The naming facility is a
service that can casily and valuably cross application boundarics whereas the
computation/selection requires simultancously more complex and more application
spectfic service. It is not unrcasonable to join the two in a particular situation if

naming is not to be unificd across application boundaries, as was done by Lancaster.

This work concentrates on the naming support as distinct from other forms of
selection that is needed for a programming support cnvironment, especially
recoghizing that programming cfforts must be donc in conjunction with other

people. In general the sharing of name management and name resolution is left to

122

L e .
. P S
PTG IS W W T MUY o

Ko}

MPIPOAPUEE ST T W

St i Sae S Jesse Sy S LA T T S-St St M S aaes g o vy Bl Y e o " — pe— — -~

16 1n addition, suppose it is the intention of the prestammer that this

procedure,
procedure be in Clu, although a first version might be sketehed oat i a pseudo-Cla
invented by the programmer for this purpose. The programmer might also idenufy
the procedure with the label "language: Clu™. "This name will be avaable v hether
or not the sketeh is converted to Clu that can be compiled. Suppose that the
programmer requests that a compiled version of the "integrate™ procedure be

installed in a public library, but a compiled version does not exist. - A lriendly

programming support environment may scarch out the object named "integrate”
and "language: Clu”, interpret the later and attempt to compile the code, although
the fact that the object is identified as being in Clu does not guarantee that it is.
Therefore, the installation request may fail, hecause a name {or the object was not
correctly meaningful. "The installation procedure would in fact use the compiler not
only to compile, but also to identify an object that can be compiled and therefore
matches the language specification for Clu. Selection of objects in Clu cannot be
done on the basis of names assigned to those objects, but require some additional
functionality from the selection mechanism. On the other hand, the naming
[unction remains important and bears scparate investigation because its

functionality is universal,

Lancaster provides an approach different from the other rescarchers in this arca.

Her work is described here bricfly, because her approach is similar to the approach

taken in this rescarch and is not readily available in the literature. The problem
domain is that of selecting an implementation from among a sct of implementations : 1

S
for a particular specification. In order to achieve this and support a collection of

goals similar to the observations about hvman naming first cnumerated here in RS

! It is probably chosen hecause it is meaningful to potential users of it and therefore is more casily

remembered, although a name such as "x27" might be chosen simply as an identifier. To the user of
the procedure it is no less or more usable depending on which names was chosen.

";. 1

121

4
. ~:t1
."1

- ‘a ‘a & 4

. L R - - . - “ . e e I - e Te s T R R ST T co . S . '
LR et c S . I L R U et et at P R P - i
B S A U P R I R R S ST g Sy A B S IO LA U L P - B PV PSS S

clforts. In particular, it is especially useful when the programmer has a number of
tasks related to a programming cffort and must coordinate the work with others
working on the same or related projects. The ools of a programming support
cnvironment may include cditors, compilers, interpreters, linkers, loaders, testing
fuctlities, debuggers, documentation facilities, product and revision announcement
facilitics, cte. Fxactly which tools are needed and in’ what form is not the topic of
this rescarch, For a number of such programming support systems, sce the
"Software Fngineering - Symposium - on - Practical - Soltware Development
Environments” [47] in addition to the carlier work by Tichy [55, 56], Schmidt [45],
Kay [53), Dolatta and Mashcey [13] (for more on the Programmer’s Workbench sce
also Bianchi and Wood [1]), Weinreb and Moon [58], and lancaster [27] as

cxamples.

Once important problem to be solved in a programming support environment is how
o distinguish an object from among a sct. Although commonly not addressed in
programming support cnvironments, the problem of identification and
distinguishing among objects can be separated into several problems, as was done in
cartier chapters in this rescarch. One part of the larger problem is naming. It
implics possibly joint decisions about the names that will be assigned to objects and
the contexts in which they will be recognizable. There is an additional part of the
problem that plays an especially important role in programming support
environments. That is the issue of selection of an object based on information about

the object that has not been pre-selected as a name,

A bricf example will help to explicate the distinction being made here. Consider a

procedure named "integrate”. The name is chosen as a name and assigned to the

120

OPLTRTAINY

Chapter Six

Design of a Naming Iacility for a
Programming Support Fnvironment

6.1 Introduction

By considering clectronic mail, much was learned about a naming facility. In order
to understand naming facilitics better, the requirements and a design for such a °
facility in a programming support environment will also be explored. Programming . .
in anything but the smallest project is a social activily requiring cooperation and o
coordination among a group of pcople working toward a single goal, cach with a
separate but complementary set of tasks. A programming support environment may

provide many functions for all involved in a programming cffort. Certain naming o NN
factlitics can help o improve cven the simplest functions. It is the supporting
naming facilities that will be explored in this chapter. This study will begin with an -
cvamination of the problem and brief summary of related work in this arca, The T
chapter follows a structure similar 1o the previous chapter discussing the clectronic -
mail system. The chapter will begin with an overview of what is needed in a 'Y
programming support environment, followed by a presentation of the extended

model used in this domain, a discussion of the operations needed, a proposal for a
possible representation for the data structure and somce concluding remarks

comparing this version of the model with the previous one,

6.2 The Programming Support Environment

A programming support environment is many different things for diffcrent people

at different times, but one can say that it supports people in their programming

a reflection of the state of the sender at the time that the message was sent. Thus,
cach message reflects both the conversation and those messages in the conversation
that were read by the sender prior to sending the message. In a different approach
crom that of this rescarch, Comer and Peterson are presenting some of the same

w15 that have been presented here. They identify a conversation on the bascs both

U the group of participants and the topic of interest. Such a conversation corsists of
v set of messages identificd on those bases, and cach message is identifiable only
locally within the conversation of which it is a part. In addition, the idea that there
is something unique about the state of cach participant is also important. In this
case, the state of the person is reflected in the list of messages previously read. 1t is
the idea of the context from which a sender is sending that is new and unique in
Comer and Peterson’s work and which, indeced, ties it more closcly to that of this
report. Comer and Peterson choose to provide a standard globally unique naming
scheme. This work is progressing in Peterson’s doctoral rescarch. In an ideal mail
based conversation, everything would be based on the conversation itsclf, both those
aspects that are shared as well as those that are unigue o an individual participant.
Such a system would incorporate both the ideas of this research and those of Comer

and Peterson,

- 1
-

118

The second lesson 1o be learned from the implementation deals with limiting the
potential uses of the computer lacility. Consider bricfly a situation in which (hree
people are discussing a particular subject. One day once of them is unavailable and
the other two continue, defining new names in the conversation. The third will
probably never be brought fully up to date about what went on. Suppose the two
defined a new name "zibble”, the name lor a new concept that they are proposing.
The third one will not realize that anything went on until the new name is used. In
this mail system, if the name is not yet defined in the third person’s copy of the
current context, then when it arrives in a message, it will be added as a candidate
and its translation will be included until it has been used enough in the local copy of
the context. Thus, the third person will be brought up o date on any names that
continue to be used and were defined during any absence. In such a mail system,
the computer system could casily provide complete recall even of those ¢vents in
which somceone did not participate. Thus while one person was not participating his
or her private view of the context could be changing. This was done by Comer and
Peterson [8] with respect to messages, but it would be disconcerting at the least to
discover that one’s working namespace had changed while one was not actively
vicwing the changes. Although computers could provide a more automated form of
namc management, it would have the problems of not reflecting humans’ patterns of

naming.

The third lesson is that some of the goals of this rescarch are applicable to other
domains than naming. The goal in this work has becen to analyze and address
problems of naming. In doing so one conclusion has been that communication,
coopcration and sharing play in important role in the functions and uses of names.
The work of Comer and Peterson [8] is one of the most recent steps in the area of
conversation based mail. They propose that not only should messages be tagged

with the conversation of which they are a part, but in addition, each message carries

17

L 2GS sugh ey s seae) TR

AR
e e

system by using only the mail system itsell as the medium of communicating new
names reflects human patterns. Although computers could provide much more
sophisticated mechanisms for support and update of shared names, those might be
disconcerting at best o the human users, Phird, only the mail senders and
recipients have been included in the aggregate and context mechanism. Research
into conversation-based mail {8] is progressing in grouping and managing messages
on a similar basis to that suggested here for name management. Fach ol these three

points will be discussed in further detail,

First, consider the use of a single, simple acceptance procedure and no deletion
procedure. Carroll’s studies [7] have shown that one facet of accepting names is
repeated usage. For simplicity it has been assumed here that it makes no difference
who reuses them from an individual's point of view. In fact, carrying this further,
the assumption is made that reviewing them by looking at a message repeatedly will
have the same effect as reuse for the individual, In addition, three possible states on
the road to acceptance have been assumed as mentioned carlier and depicted in the
state diagram, Figure 5-6, reduced from the four suggested in Chapter 4. When a
new name and address pair arrives i a message and the recipient reads the message,
the name and address pair s added to the current context in the candidatel state.
Upon cach suceessive reading or use of the name in an outgoing message, the
context entiy moves to the next state in the state diagram until it becoimes accepted.
Until the time when it is accepted, when it is displayed to the user its translation is
displayed as well. Once the user has seen the name with its associated net address
three times, 1tis assumed that the user will know to which address the name refers.
[his procedure reflects part of what humans do in jointly choosing names. Another
part, not included in this implementation, is a mechanism for allowing names to
mutate during the acceptance procedure as discussed in Chapter 4. This was

determined to be too complex to include in the implementation.

116

e N
PP PPN {

M N R Y VRISV NS sl WOV TN PEFEFE PO P IS VE DX VE T SR S VSV VN

Loy MIAAIMA ees arwt Sva e S ARG SUu aaet vl sl e Mew s g LA el e e g b o upeih Svew ML vk Mot avel Nt el Sl etk ent s el SOl SO S amu SMCE T A

-~ . 4 -

access than generally recommended to names and contexts, side-stepping the
aggregate mechanism. ‘The changes to the operations listed in Appendix B.1are due
to three factors. ‘The two legitimate ones are the addition of the Aggregate ficld to
messages and the need o translate names both when sending and displaying
messages. The third cause for changes 1o the mail system was incomplete support

for multiple processes in Mock Lisp. Those operations are indicated as such.,

This section has described a simplified version of the modcel, that was used in the
implementation of the idcas in a mail system. Users have private copies of shared
current contexts and aggregates. Contexts can only contain names for user
mailboxes, representing the users to be named in a shared context and also the
participants in the sharing of that context. Each mail item carries with it the name
of the aggregate and the names and addresses of all addressces as well as the sender.
In general, the sender and recipient need not see or use those addresses. In addition
simplificd acceptance and merging procedures were used and no deletion occurs

automatically.

‘The next section discusses conclusions that can be drawn from the experience with

the mail system.

5.4 Lessons from the Mail System

The mail system was a further simplification of the modcl that was presented in
carlicr chapters. In turn the ideas presented in those carlier chapters were a model
of human naming and communication. In spite of these simplifications, there are
Icssons to be learned from the mail system. Three are important ecnough to highlight

here. First, even with the simplification of some of the mechanisms such as

acceptance and deletion, a model can still be provided that is useful to users and R

reflects patterns comfortable to them. Sccond, the limitations placed on the mail

115

- N
9
-

. e e -
c . . (L T T U T S S St TN . P

T Ay e .t

[N - B L - .
: SR L s - Ot T, P . . . T .o . .
AL S AP S LG I SR Y DA Tl Ba Yo T & G 0 U TN TY S ST SILIGS T W YR UV G U PREPORE S WA NP 3 -M

- ——

unknown

deleted
/
—

— e
—— PSS

Figure 5-6:Possible states and transitions for ¢ntrics a context

i_ u d ¢t ¢c2 a
u u d {clt|ct}ct u unknown

i d| d]| d]|ct]|ct]|ct d deleted
- cl |ct{clict]ct|c2 c1 candidatel
c2 |ct|ctlct|c2]c2 c2 candidate2
g | alct|clt|c2|c2]| a a accepted
B Figure 5-7:State table for merging two contexts
’

only a prototype and the users of it are sophisticated programmers and Emacs users.
, These are expunge-context and change-status. This allows the user more direct
o 114 R
” SRR
» -9

in Chapter 4 for acceptance is the number of uses. In addition, in order (o allow for
cleaning up a context, an expunge operation is included as well, which removes all
deleted entries from the context, making them unknown again. A name-address

pair can go from cither the deleted or unknown state into the first candidate state.

The hooks are available in the implementations of contexts and aggregates for
merging, although this was not put into the prototype of the user interface. When
two contexts are merged, the states of all the entries in them are determined as in
Figure 5-7. This is a simplification of Figure 4-2. Because the aggregates and
contexts are being used by only one application and in a very stylized way, the
acceplance and merging procedurcs can be included in them directly and need not

parameterize them by these proccdurcs.14

There are three levels of operations provided to support naming as described above.
The topmost level is the user interface to the mail system. This is supported by
operations on aggregates, which in turn in some cases (except for operations on the
cnvironment) are supported by operations on contexts.’> The functions and
operations are atl listed in Appendix B. It should be noted here that several

operations have been included that should not be accessible (o users, because this is

14'l'hcrc was a problem in Clu. For reliability every change was to be saved onto disk, In Clu

there were two choices. ‘This could be done by converting all the information into a file losing type
information and requiring conversion code within the procedures. “The other alternative was to usc a
function called ge_dump to copy the object with its type information into a file. For cfliciency the
choice was the latter, but the context cluster needed to be parameterized by procedures for
acceptance, deletion, and merging. Such objects can be ¢reated and were originally, although it was
discovered later that due to implcmentation limitations, procedures cannot be ge_dumped.

lS’I'hiss implementation was embedded in a pre-existing mail system written by Mark Rosenstein at
MIT. Itis written in Mock Lisp. the extension fanguage of Gosling’s Fmacs {14} and runs on a Vax
117750 running BSID 4.2 Unix [57). Mock Lisp is not a rich enough language to achieve what was
neceded, so contexts, aggregates, and an interface are written in Clu [30) and run in a scparate process.
Only the uvser's interface within the mail system and the operations dcfining the context and
aggregate clusters arc considered here.

113

with only one candidate entry for Chris (indicated by "C™ as opposed to "A” for the
other entrics). In Chris’s case, all the entrics would be candidates. ‘The only
variation (rom this pattern is use of the basic aggregate, which doces not escape the

owner's domain,

The mait system provides (wo approachies to managing the names and objects to the
mail user. One is Lo create aggregates and enter names manually, For this, specific
< operations are provided listed in Appendix B, "These operations allow for creation
h of aggregates and contexts and adding, deleting, and modifying the state of entrics. ®
The other approach is automatic, allowing names 0 be entered with usage as was

suggested in the example discussed in this chapter. When a message is sent or read, PRIRIS.

an aggregate is chosen by the mail system. 1f there is no aggregate ficld, the basic e
aggregate is chosen, and otherwise the specified aggregate is chosen. I a name-
address pair is found that does not exist in the current context, it is made a

candidate. When a message is sent, i a name is found that exists only in the

environment of the currently active aggregate, that name-address pair is proposed as
a candidate to the current context. The implementation allows for both approaches S

and the user can intermingle the two.

-1
For this impleraentation a simple scheme for accepting names has been chosen, A Sl 1
name can be in onc of five states, candidatel, candidate2, accepted, deleted, and 1

unknown, see Figurc 5-6. This is simplificd from Figures 4-1 and 4-3. The solid

lines indicate transitions that can occur automatically; the dashed line transitions
can only bc achieved manually. Unknown implies that there is no such entry.
When a name is first proposed it is in the first candidate state. Upon another use of
that namc with that object (net address), it moves to the second candidate state. The
third usc puts it into the accepted state, where it remains unless it is manually
deleted. It is only when a current context entry is in the accepled state that the

address is not displayed when the name is displayed. Thus the only factor discussed

112

themselves. ‘The reason that this is possible is that in the Internet specifications,
cach ficld that represents a person can have multiple parts, an initial phrase, an
address, and a comment. Since the comment part often has nnpredictable
information in it and the initial phrase, il present, gencerally has only a name, this
[act is being used. 1Uis not foolproof, but no problems have been reported and any
could be casily corrected by the user. Normally, such a ficld in messages generated
with this mail facility contains a phrase that is the shared name in the current
context and a nct address. In the most common case, the sender specifics a name
and the mail system appends the net address before sending the message. Figure
5-1 contains examples of both, At the receiver's site, when the message is read, the
address is stripped off and the recipient sees only the name. This hides the awkward

and user-unfricndly network address in the user interface.

There are several ways in which this can vary. First, the sender may be using a name
that has not previously been used in that aggregate. I the name exists in the
cavironment, its translation is taken from there and proposed as a candidate in the
current context. If this is a completely new name translation pair, the sender must
include both name and address, which is then proposed in the current context. At
the receiving end, if the name translation pair has been accepted, the recipient secs
only the name. Otherwise the recipient will see both. This last casc reflects a
situation in which the name has not yet been accepted, therefore the translation is
provided as well as the name as might be done in direct conversation. If the name is
completely new to the recipient, it is proposed in the current context. If it already
exists, its usage is reflected in the current context as appropriate. Thus users can
proposc both new aggregates and new namces within existing aggregates to be shared
with other users. In the message in Figure 5-1, Randy is proposing a new name to
the participants in the mail aggregate. To Chris, the new participant, the aggregate

itself and all its cntries are new. The ageregate displayed in Figure 5-5 is Randy’s,

111

L S e B it & m i s i By s AR SR e e Are gl A S A ansen Jo Bas Subacbasih A EAE

- When Chris first uses the mail system, a private aggregate "basic_a” will S
be created. Later when Chris first reads the message from Randy, o
another aggregate will be created named "mail”. In addition, a new . .
contexe named "mail™ will be created and it will be the current context s
of the new aggregate. I, for some reason, a context named "mail”
alrecady existed, that context would have been chosen as the current
context of the new aggregate.

A message may be sent without the aggregate ficld specified. ‘This will
occur cither il the sender specilies no aggregate ficld or if the sender
specifies use of the "basic_a™ aggregate. In cither case, the sender's '
p "basic_a" will be used for any translation needed. -

Names specified in "O™'s will not be translated. The combination of a
= name in "<O™'s and a preceding phrase, as in the "Ce:" ficld of Figure
' 5-1 allows for adding new names and addresses to the current context of
~ the specified aggregate. This will be discussed lurther below. o

A message may arrive without an aggregate ficld specificd. There are
two possible causes for this. Either the sender used his or her "basic_a" -i{-_"-
aggregate, or the sender was not using a facility that supported L
specifying aggregates. In cither case, the recipient’s "basic_a" aggregate
will be used when reading the message.

Finally, there is a facility allowing assignment of an aggregate to a
message after arrival, so that on succeeding readings of the message, its
names will be translated with respect 1o the assigned aggregate. This is
especially useful for messages coming from senders not using this mail
system.,

In the implementation two decisions were bascd on the fact that this is a mail ‘ o_‘
system. The first has to do with the nature of the names and objects supported and
the second with the transport of names and proposed translations. The namcs that

are used for people are strings. In addition, since names are translated into network

addresses which in the Internet specification also consist of strings, the objects are
represented as strings as well. The second decision is that the only mcans of I';:f'{
transporting names within the federated computer facility is the mail messages o

[

110

mail -
basic_a

-

rv ,
AR NP

.
.

rr

- Figure 5-4:'The list of aggregates -

Current context:

{ A Sandy smith@MIT-CLLEANSER.ARPA
& A Alex Brown INP@MIT-MULTICS.ARPA
A Randy rsmith@MUT-NEWCLEANSER.ARPA
C Chris chosgdthasmed!qusavstukmlecg .
Environment:

Figure 5-5:Displaying an aggregate

S-5 will help in this discussion. The assumption is that the message in Figure 5-11s i
at least the third message sent among the group. but that Chris is new to the group.
There are a number of points (o note about using the system. Figure 5-5 is Randy’s
"mail” aggregatc; no environment has been specified.

- Contexts do not contain separate lists of participants because the names

in a context are not only the objects being named, but also the
participants.

- Since an aggregate is @ namespace, cach outgoing and incoming message -
will have a newly delined ficld attached to it, as allowed under the -
internet specification [31, 32, ‘The field’s name is "Aggregate” and it
will name the private aggregate containing the shared context to be used
for the envelope of that message, in this case "mail”,

109 o

o e . a . . PR N . LN B . . y -
" R T I T ‘. E I T I R . RN St oty e e . DI e T
e e TR e e e e e S N e e .- et et e, AR R Y .t N
R T e s SRR inasinsddehtdiiundsdndendendeniminsiestuing

two mechanisms, the library and the file system. File systems present a problem in a
programming support cnvironment. ‘They do not provide the support for shared
and cooperative naming, the flexibility for the individual, nor the flexibility in
strecture that humans usce in their everyday activities. This was discussed earlier in

Chapici 2.

As mentioned carlier, Lancaster provides an example of a library lacility. A library
can provide a number of functions: cataloguing, modularizing the namespace,
allowing for overlap in choices of names, sclecting among multiple implementations
and multiple versions, locking, recording dependencies, providing consistency based

on them, ete. Much of this functionality is not numing,

In addition, there is another arca of naming in a programming support environment,
the namces cmbedded in the objects created within the programming support
environment. The problem here is that not only must programmers cooperate in
their naming, but also there must be provision for both the programmer and user to
bind names o objects. The situation is the following. The programmer must use
names in some cases bound to objects and in other cases not bound during the
programming cffort. Those namcs not bound during programming must be bound
at later times. The Known Scgment Table in Multics mentioned carlier is one
mechanism for achieving this. Binding may occur in several stages. For example,
some binding may arise from compiling source code. Further binding may occur
when compiled code is linked, loaded or executed. In cach case, the new bindings
arc the result of merging those already known and some found through the bindings
of the client or user requesting that the activity occur. Thus, in cuch case a merge
occurs of what was provided as a partially defined template for a namespace and
bindings found through the client or user’s namespace. As will be scen below, this

merge is the same kind of merge discussed in Chapter 4.

123

A programming support environment has even more need for more complex names
than those provided in the clectronic mail system implementation. In the mail
situation pames consisting only of strings sufficed. A richer naming facility would
allow for attributes, cach of which has a name and a value. ‘This approach has been
used in a number of places, such as Lancaster [27], Oppen and Dalal [36], Dawes et
al. [11] and Kerr [20]. In addition, much work has been done in this direction in the
Astficial Intelligence community. The approach that will be taken here will follow

are closely the work of the four papers mientioned above. Such an extension

ald have enhanced the mail system, but did not appear to be as important as in
the case of the programming support environment. The structure implied here is
simply a means of organizing the meanings of names, as was discussed in Chapter
2 when meaningfulness and structure were addressed as part of understanding the

nature of names.

In order to achieve the desired functionality, two facilitics will be designed. Both
arc based on the framework previously proposed in this work. The first is a library
naming facility to aid in cataloguing, sharing and cooperating in paming and the

second is templates and the associated operations to make them useful.

6.3 The Model

The model for naming in a programming support environment consists of
aggregates and contexts, expanded from that model used carlier in Chapter 5. In
addition, certain contexts and aggregates will be used in stylized ways in order to
achicve the desired cffect. Therefore the modifications to the basic mechanisms will
be discussed first, then how they will be uscd, followed by a discussion of the
operations needed to achieve the goals. No changes arc proposed here for
aggregates, so the discussion will be limited to contexts, followed by discussions of

two new terms, library contexts and template aggregates,

124

Onc of the ways in which humans identify the context within which they want o
resolve names is by the other participants involved. Fhe electronic mail system was
anomalous in that the objects being named were also the participants in a shared
context. ‘therelore, these two facets of the context were combined, simplifying
contexts. In most cases, the named objects will be distinet from participants in
sharing. ‘Thus, in the programming support environment, a shared context must
also have associated with it a separate set of participants. Certain participants may
have different effects on the shared context from the other participants. For
example, it may be that a librarian for a program library is the only one allowed to
create new names in the library, while other participants can only call on the library
to resolve names. This interaction between the set of participants and the

acceptance and deletion procedures will recur later in this discussion.

A second modification of the context model is that names may be chosen without
knowing into which object they will be mapped. This is needed in order to provide
for such situations as the recursive function, or including a call to a procedure that
has yet to be written. The name must be included in the source code. In fact,' as
long as the code is not actually invoked, many compilers will allow it to be compiled,

in order to begin the process of testing and debugging with incomplete code.

The third change from the previous model, as has been discussed, is a meaningful
structure consisting of names as pairs of attribute or name and value. This last
change allows for names that can manifest more meaning, better reflecting human

naming.

‘There is a special use for both of the types of contexts and aggregates. The special
use of the context is as a library context. There are three requirements or

restrictions placed on a library context.

- A library context will contain only attributes from a pre-specified set.

125

v e P T T W T o W v

For simplicity, since this work is not rescarch into programyming support
environments, a superset ol Lancaster’s standard attributes will be
assumed. Others such as Schmidt [45] propose a shightly different set.
Since, in a general programming support environment, namable objects
- may be other things besides implementations, such as specifications or
shared sets of delinitions (in Clu a set of equates), the set of standard
attributes will be enlarged. 10 will also be expanded o provide cach
object a name that is unique within the library context.

o
t

An object can exist in at most one library context. As previously
- discussed, a name in a context may label another name allowing for
' indirection and control of binding time between the name and the
object. On the other hand, a name may also label the object directly. A
restriction on library contexts is that an object in the programming
support environment will exist in at most one library context and in that
context will have exactly one unigque name, although it may have other
non-unique namges, for example OwnedBy or RelatedSpecification.,

- A hbrary context must be able to store names that are not yet assigned to
objects. The understanding is that before one needs to access the object
using the name, the object will have been created. The problem is
exhibited in its simplest form when one writes a recursive function. One
must be able to namie the function before it is fully defined.

The usc of library contexts will be in conjunction with unrestricted contexts. The

unrestricied contexts will provide the full flexibility of naming discussed in previous

chapters with one minor difference. Names or attributes can be translated only into

other names in other contexts. Those may or may not be names in library contexts. e

1
These additional contexts will allow for private work or work by subgroups of a °
larger group. For example, a subgroup may want to use a new experimental sct of e :’:1
objects not yet released for general use. It is worth noting here that there may be]

objects in no library context, but only in non-library contexts. An example of one
such objcct is the list of errors due to running a compilation. Such an object)]
probably does not belong in a publicly used library, but only in a private context.

The additional contexts will be nceded to meet the goals of the full richness of

126

vv'rv.":"v‘-:.‘A' P

naming spelled out in carlier chapters, that are also beneficial for a programming

support environment,

The model presented thus far is somewhat over restricted. 10 would not allow
objects to migrate from one library to another. But in a distributed computing
factlity, one may discover that an object should be relocated for convenience or
clficiency. I an object is moved to another library, all those references to the object
in the original library will be left dangling unless a forward pointer is added 1o the
hibrary entry. ‘Therelore, by allowing such “tombstones” pointing to another library,

more than one library entry is permitted for some objects.

The special use of the aggregate in the programuming support environment is as a
template aggregate. In the model here cach object will consist of the actual object,
stich as a procedure, and a template aggregate. The template aggregate is not special
in form, although, most likely it contains some names not yet assigned to particular
objects, but reserved for future use. Providing a namcespace for an object that is
separate from the namespace in which the object was created is not a new idea. ‘This
is done regularly and was clucidated by Saltzer in his general discussion on naming
[42].

‘The template aggregate provides a special case of the merging problem discussed in
Scction 4.6. Not only must the object’s and the user’s contexts be merged, but in
this special case an environment must be created as well from the two aggregates.
Fxactly how this is to be done must be specified by the creator of the particular
template. It may differ for cach template. The specification may depend on
whether or not both current contexts affect the resulting current context; if both do,
how conflicts are resolved; if not, does the unused one simply become part of the

environment, and how conflicts in the rules of the two environments are resolved.

127

i

me

AR N I & i e Cout e S i Ui ek Sl iAo 022 i A At N S AN et R At i e a2

An understanding of the enhanced model for contexts and stylized uses for contexts
as library contexts and aggregates as templates and a discussion of the opcerations
needed to support them is now possible. That will be followed by a presentation of

a possible representation,

6.4 T'he Operations

An understanding of the objects and their usces is only part of the description needed
in a design of an implementation. In addition, a fist of operations is needed. The
model for contexts has been expanded from the mail system; the resulting
operations on both contexts and aggregates are listed in Appendix C.1. For
completeness those operations include arguments for state modification of entries.
It should be noted here that although in the opcerations, names are represented as
strings, they should in fact be logical combinations of strings, allowing the clicnt to
name an object by a set of names. An implementation of this would be embedded
in the implementations of the appropriate operations. New operations are also
needed in the programming support environment to implement library contexts and

template aggregates.

The library scrves a number of functions in a programming support environment.
In addition to the cataloguing, sharing and joint management that have an effect on
naming, a library may also record and manage relationships among catalogued
objects as well as provide support for other forms of selection among sets of objects.
This research is considering only the naming functions and therefore will discuss

only the operations needed for library contexts,

Library contexts provide a shared context for all the participants in perhaps a
particular project. The library context will be the sole repository for the "official”

versions of all objects of interest to the project as a whole. Entries in a library will be

128

PP PR

L B 2o mea e

restricted so that cach type of object will have a fixed set of names. For example, a
procedure object might have, in addition o its name, the name ol the author, the
name of its specification, the names of other implementations of the specification,
the names of related documentation, the names of other procedures on which this

one depends, cte. DifTerent types ol objects will have different sets of names,

For simplicity, cach object in a library should be contained in no more than one
lihrary context, although there is no way to enforce this, since librarics are
independent of each other. The probiem is that most names nave manifest
meanings and as such may become inapplicable or incorrect. An added
complication is that the fact of an object’s containment in a library is not an attribute
ol the object. Therefore, when the object is modilied or its names change, this will
be recorded only where specified. Keeping names in more than one library in
synchrony would be difficult at best and might be impossible if one could not locate
all of them. Therefore, for the purposes of this work it will be assumed that an
object is in, at most, onc library and that whenever an object is added to or modified
within a library some of its names may change. There are several issucs relevant to

library contexts that can be addressed separately.

Creation and updating of names in a library must be considered. When a new
object is entered into a library, a set of names will be specified for it based on its
type, as mentioned carlier. Some of these will be defined at the time of creation,
others only later. Some may be optional. Since this is not rescarch into
programming support environments, although the facility must be here to support
it, those choices arc left 1o others in the field of programming support environments.
In addition, there are situations in which only a label is chosen, for example, if the
ubject does not exist, but the name is needed or should be reserved. The standard
context operations are listed in Appendix C.1. The additional procedures nceded

for library contexts are listed in Appendix C.2.

129

-

—— P ——

Another important issue in considering library contexts is moving objects from one
library to another for convenience or necessity. The fact that names can be mapped
into other names in other contexts will be used in order to avold dangling references
and help previous users of the object being moved: indirect names will replace
direct references. As previously mentioned, if an object is contained in two cr more
libraries, the names may become obsolete. ‘There are two possible approaches o
this. ‘The firstis to assume that all such information about an indirect reference may
he obsolete. The second is to include an operation on librarices that causes them to
trace all such indireet references and update all names for cach indirect reference.

The operation needed to support the latter is also in Appendix C.2

Finally, with respect to library contexts, it should be pointed out that all library
context operations can be implemented out of the standard context operations. For
example, consider move_library_reference. 1t will mean ercating a new reference in
the new library using add_name. If the new label needs to be unique in the new
context, some further checking in the new library may be necded before the object
is moved. Once the name has been selected and the new reference created in the

new library, the old reference can be modified to reflect an indirect reference.

Three special operations are needed for template aggregates beyond those for
aggregates histed in Appendix C.1. They are listed in Appendix C3. The first

operation is a replacement for the create operation of aggregates. It is needed

because a template aggregate is created by creating an aggregate and then simply

wrapping it in the template aggregate type. The second procedure is the merging

ot e e e e e ot
(PSP RPN I P Ty

operation that will be used when a template is to be merged with a client’s
aggregate. Finally, an aspect of a template that must be considered is whether all °
users of the object share a single current context or whether cach will have a private

copy. The last operation, sharc_current_context allows for selecting this option.

130

Py >'-'-m... Dy P garn P e s St St Sty St S Sty SRR S S S et

6.5 Design of an lmplementation

In order to validate the proposal for a more complex implementation in this chapter,
a representation is described in this section. An implementation would follow
dircctly from i, Since library contexts and template aggregates are quite similar to
contexts and aggregates their implementations are not discussed in - detail,
Furthermore, since aggregates here are the same as in the electronic mail system,

they are not reconsidered.

CONTEXT
attnbute: value/ . . attributes: values/
name objects object names -
participants
namea
alt1: valuelt : -» usert
T) att1: valuet
user2
attt: NILNAME — . userd
context2, nameb
namea —_— namec att1.valuet
nameb — LY
named
P Nilobject att1: NILNAME
named —

Figure 6-1:A representation of a context

The representation of a context proposed here is as follows and is depicted in Figure
6-1. A context consists of three sets, two of which are discussed here together and

the third later. The first is a sct of names. A name may be a pair or a single entity,

131

and cach name is associated with a set of objects. The sceond set in the context is
the sct of objects. An entry in this set consists of an object or an indirect reference
to the object in another context and a list of all names associated with it Although
this means that informat® - wiil be duplicated within a context, it will allow for
more cflicient operation . notherwise. ‘The set of names should be organized to
optimize scarches on average, ‘This whole arrangement will allow for two sorts of
Fast access. The first is scarching for all objects having a certain name. ‘The second
is finding all the names for a particular object. The tradeoff is that modification
requires aceess to both sets. In those cases where a name is applicable, but not yet
defined, Lancaster's approach of using Nil is proposed. In cases where a name is not
applicable, the object is not in the sct of objccts 1o which the name can be appliced.
There is one further consideration: what to do in the sct of objects about names that
have been sclected for objects that do not currently cxist. Dummy objects are
proposed to solve this problem. A dummy object is a place holder. In the set of
names, the dummy object appears no different from any other object. In the set of
objects, the dummy object has something in common with Nil as proposed by
Lancaster; there is no object there, although there may be a sct of names, rather
than just one. ‘The two reasons that one might want such an unassigned name are,
first, that one may want to reserve a name and, second, that one may want to assign
a collection of names to such a dummy object, later being able to attach that whole
set of names to a real object. Thus there will now be NilName (which is the Nil that

L.ancaster proposed) and NilObject.

The third set associated with a context is the sct of participants. How the
participants arc identificd is not addressed here fully. As mentioned carlier, it may
be a problem of authentication. The context is not expected to be an authentication
service. Rather an authentication service is assumed to be accessible to the context

and user. There are two possible approaches to using an authentication service.

132

First, the user can make a request of the authentication service o produce an
unforgeable object that the context will believe, 10 be passed o the context cither
dirccetly by the authentication service or by the user. Sceond, the context can
request that the authentication service authenticate a particular requestor of the
context.V?
Before leaving this scction hbrary contexts and template aggregales must be
reconsidered brictly. First, library contexts contain a little information above and
beyond a standard context. A library context also has a record of those required and
optional names that have been identified in it for specific types of objects to be
named init. Not all types need to have such specifications, and names not included
in those lists can also be attached 0 objects of any type. This facility of pre-
specifying attribute names allows objects of certain types to have names that fall into
certain patterns. For example, it may be that part of entering a source code object
into a library must be an indication of the language of the source code. An optional
name might be the author of the code, assuming that it 1s known. The only
additional information associated with template aggregates is whether or not the
current context resulting from a merge is to be shared by all current uscrs of the
associated object. These picees of related information in library contexts and

template aggregates must be considered in their representations.

1711 should be noted that authentication need not depend on globally unique identification. In
fact, at best, it can depend on mostly unique identifiers. Encryption keys provide a good example of
the fact that an absolute guarantee of uniquencss and unforgeability are impossible, It is all a matter
of degree; cost and degree of the guarantee are closcly linked.

133

)
Y
S d
DY
o

e

) N
-

. [N .

." o .] I ..l

T KRR AP . e .
AT S D GO Sy TN SRR AP ST S A

6.6 Comparisons and Conclusions

Since the model presented in this chapter is an expansion of that of Chapter S, the
differences must be examined as a means of recommending in cach arca which
choice is more general. In some cases, the simpler version may be more appropriate
to the general case, with certain exceptions needed for particutar applications. In
other cases, the more complex version may be more appropriate, with the

understanding that there are situations that do not need such full functionality.

This chapter contains a proposal for a sccond arca in which the naming framework
can beneficially be applied. ‘There are a number of ways in which the framework
was modified from the previous proposal. Each of those will be examined
individually, considering whether cach is of gencral applicability or not.

- Names without bindings: The programming support cnvironment
needed to allow for namies to be chosen as place holders for objects that
were not currently known to exist. For instance, that would permit
naming of procedures that were to be written later. Although the issue
did not arisc in the ¢lectronic mait system, it might have been uscful
there as well. An example is a name that represents a role, for example
"chair of the committee.” There may be a time when there is no person
in that role, but the role still exists.

Participants: The reason that a scparate list of participants was not
necessary in the mail system was that the sct of recipients was the set of
participants. A set of participants must be a part of cvery context,
although as occurred in the mail system the implementation of contexts
could be simplified because the entries in the context and the set of
participants were identical.

1

Restricting an object to heing in only one context: 1t would appcar that
such a limitation exists for those objects in library contexts. In fact, such
a restriction was suggested only among library contexts in order to
simplify implementation and synchronization of information, although
as suggested, there is no means of enforcing it. Such a restriction would
certainly be detrimental to a mail recipient naming scheme as well as
many other facilities and is unnecessary. ‘Therefore it is not

134

PR . . Y AT N e T T T e e e
[l Yl VLT M WP TAI TR WY BN TS TR SR WP B SO BN 1 o o o

PR
PRI 0 TV SR)

PP P WY

rccommended as a general [eature of contexts. 1t should be noted here
that restricting an object to being in no more than one library context is
a separate issue from whether or not the library context itsell consists of
multiple copics. Multiple copies can be synchronized o any desirable
degree.

Access control: Access control is related to naming in that it may be
used to restrict the privileges of certain participants in a context. 1t may
depend on authentication. Ina library [acility access control may be
used to allow only the librarian special privileges. Access control was
not discussed in the electronic mail system, although it could well be 4
uscful part of such a system. ‘The advantage of including access control
and authorization is that onc can leave objects completely accessible if
one wants, while having the opportunity to control access when it is
needed. Therelore, an access control mechanism is recommended,
although it is external to a naming facility.

‘Thus the choices here are to allow for flexibility, permitting the implementer or user
the choice of whether names should have bindings initially, whether objects can be
entered into one or more than one context, and what the access control ought to be.
In addition, the set of participants should be distinct from the set of objects named

in a context,

135

S VO VLA CPY VLI S S W

Chapter Seven

Conclusion

7.1 Reflection of the ldeas

In this rescarch, a name s defined (o be an object that can be associated with
another object and has an cquality operation defined on it. 'The most common use
of a name is as a handle Tor an object. A name used thus provides access o the
object. A sccond use for a name is as a place holder for an object. "The reason that
place holders are important is for usec as a substitute for the object itsclf,
Substitution may be needed cither if the object is to be shared and cannot exist in
more than one place at one time or il the named object does not exist at the time.
‘The problem being addressed in this rescarch is the design of a computer naming
facility achicving the following goals. First, names must provide access to named
objects as well as be usable as place holders for the objects named by them. Second,
it must be possible o share those names across computer boundaries. Third, it must
be possible to communicate using names. There are two forms that this
communication takes. One is the transmission of the names themselves and the
other is transmission of information in the names because the names are meaningful
to be to the user and recipient of the name. Finally, an implementation must be

feasible.

Computer narning, as described in this rescarch, reflects a social process. The social
process is assigning and using names privately or in limited groups and sharing the
responsibility for that assignment, modification, and deassignment. 'The process of
naming. when done cooperatively, involves entities that can operate independently

as well as in cooperation with cach other. As such, these entitics form a federation

137

Vo

LIPS I S U SUPCI S W Ve 1 AP AP A D DU AP T W) Wl G A U ATV 3 il Wl T YOt Wy W

8
:
r
3
4
y
[
'
r
[
[
y

‘ .«
ol

’

i
e

»
PTG Y

23. R M. Krauss, C. M. Garlock, P.D. Bricker, 1. E. McMahon, "The role of
audible and wvisible back-channel responses i interpersonal communication,
Journal of Personality and Social Psychology 7 (1977), 523-529.

4. R. M. Krauss and S. Glucksberg, Social and nonsocial speech. Scientific
American 236 (1977), 100-108.

25. B. W. Lampson and R.F. Sproull. An open operating system for a single-uscr
machine. Proc. 7th Symposium on Opcerating Systems Principles, ACM SIGOPS,
Astlomar Conference Grounds, Pacific Grove, CA, December, 1979, pp. 98-105.

26. B. Lampson. Panel Discussion at SIGPLAN 83 Symposium on Programming
Fanguages Issues in Software Systems. SIGPLAN Notices 19, 8 (August 1984),
51-60. Moderator/Editor: L. A. Rowe

27.). N. Lancaster. Naming in a Programming Support Environment,
MIT/ZLCS/ZTR 312, Massachusetts Institute of ‘T'echnology, August, 1983, Also MS
thesis.

28. K. A Lantz and 1.1 Edighoffer. Towards a Universal Directory System.
Department of Computer Science, Stanford University, Palo Alto, Calif.,
unpublished paper.

29. B. lLindsay. Object Nuaming and Catalog Management for a Distributed
Database Manager. Proc. 2nd International Conference on Distributed Computing
Systems, Paris, France, April, 1981, Also Available as IBM Rescarch Report
RI2914, San Jose, Calif., August, 1980.

. B. Liskov et al. Clu Reference Manual. MIT/ZLCS/TR 225, Massachusetts
Institute Technology, October, 1979,

1. P Mockapetris. Domain Names - Concepts and Facilities. NIC/REC 882,
Network Working Group, USC IS, November, 1983.

32, P. V. Mockapetris. The Domain Name System. Computer Mcssage Services,
[HFIPWGO.S, Nottingham, England, May, 1984, pp. 59-70. Also Proc. tFIP6.5
Working Conference

33 R, M. Needham and AL D. Birrell, The CAP Filing System. Sixth Symposium
on Operating Systems Principles, Special Interest Group on Operating Systems of
the ACM, ACM, November, 1977, pp. 11-16.

151

12. Digital Fquipment Corporation. DECSYSTEM-20 User's Guide. Digital
Fquipment Corporation, Maynard, Massachusctts, 1978, Order No, AA-41798-TM.
Updates have been made since this version was published.

13. J. A Dolatta and 1. R. NMashey. An Introduction to the Programmer’s
Workbench, Proc. 2od T national Conference on Software Engineering,
October, 1976, pp. 164-168.

14. J. Gosling. Unix Fmacs. Carnegic Mcllon University, Pittsburgh, PA, 1982,
Ihis is the version in the public domain.,

15. K. Tarrensticn, V. White, E. Feinler. Hostnames Server, NIC/RFC 811,
Network Information Center, SR International, March, 1982,

16. 1BM. IBM Virtual — Machine/System Product: Remote Spooling
Communications Subsystem Networking General Information, 1BM, . No.
61124-5004-3.

17. IBM. IBM Virtual — Machine/System Product: Remote Spooling
Communications Subsystem Networking Program Reference and Operations Manual.
IBM, . No. 5H24-5005-2.

18. TFIP WG6.5. Furopean SEG Mecting Report on Names, Directories and Lists.
N 77, 0EIP WG6.S, Systems Environment Group Furopean Scction, October, 1982,
Bonn, October, 1982 and Rome, January-February, 1983

19. W. L Jessop,). D Noe, DM, Jacobson, 1. Baer, C. Pu. An Introduction to the
Fden Transactional File System. “Tech. Rep. 82-02-05, Department of Computer
Science, University of Washington, Scattle, Washington, February, 1982,

20. 1. H. Kerr. Interconnection of Electronic Mail Systems - a Proposal of Naming,
Addressing and Routing. International Symposium on Computer Message Systems,
TP TC-6, Ottawa, Canada, April, 1981,

21 ROM Krauss and S. Weinheimer., Changes in referential phrases as a function
of frequeney of usage 1nosocial interaction: A preliminary study. Pschonomic
Scrence 1(1964), 113-114.

220 ROM. Krauss and S, Weinheimer. Concurrent feedback, confirmation, and the
cocedimg of referents inoverbal communication. Journal of Personality and Social
I choloey £(1966), 343-346.

150

M Lt el et e e -
a2 ata A A e S e . PP WL Y. LS P . 1 P UPR DU WP P D Wy ST Wi, T P 1

P P Ty e T T ¥ W v T

References

1. G.'T.Almes, AP Black, E.D. Lazowska, 1. D. Noc. The Eden System: A
technical Review, Tech. Rep. 83-10-05, Dept. of Computer Science, University of
Washington, Scattle, Washington, October, 1982.

2. Apple Computer Inc. Macintosh. Apple Computer Inc., Cupertino, Califfornie,
1984, Reorder Apple #MI1500. This is the introductory manual for the system,

30 HE Benjamin, ML L. Hess, R. A, Weingarten, W. R, Wheeler. Interconnecting
SNA networks. 1BM Systems Journal 22,4 (1983), 344-366.

4. M. Il Bianchi and J.1.. Wood. A Uscr’s Viewpoint on the Programmer’s
Workbench, Proc. 2nd International Conference on Software Enginceering,
October, 1976, pp. 193-199.

5. A. Birrell, R.Levin, R. Needham, M. Schroeder. Grapevine: an Exercise in
Distributed Computing. Comm. ACM 25, 4 (April 1982), 260-274. Also presented
at the 8th Symposium on Operating Systems Principles, Asilomar Conference R
Grounds, Pacilic Grove, CA, sponsored by SIGOPS and ACM, December 1981 .

6. J. M. Carroll. Creating Names for Personal Files in an Interactive Compulter
Environment. IBM Research Report RC 8356, 1BM, July, 1980.

7. 1. M. Carroll. Naming and Describing in Social Communications. Language and RN
Speech 23,4 (1980), 307-322. " ®

8. D.F.Comcerand 1. L. Peterson. Conversation-Based Mail; An Overview. Tilde
Feport CSD-TR 4635, Dept. of Computer Science, Purdue University, March, 1984,
Revised September, 1984,

9. D. H. Crocker. Standard for the Format of Arpa Internet Text Mcssages.
NIC/REC 822, University of Delaware, August, 1982,

0. R. I.Cypser. The Systems Programming Series. Vol . Communications
Architecture for Distributed Systems. Addison-Wesley Publ. Co., Reading, MA and
Menlo Park, CA, 1978.

I N, W, Dawes, et al. The Design and Service Impact of Cocos, an Flectronic

Office System. International Symposium on Computer Message Systems, [HFIP
TC-6, Ottawa, Canada, April, 1981.

149

et et Vet atal et el

from the group, in order to support the needs and contributions of both, That has
been done in two separate ways. ‘The group’s needs and contributions are reflected
in the concept of the context that contains those names upon which the greup has
reached agreement. In ud(liliun; the identitics of the participants are recognized as
an important aspect of the context. The individual is given recognition in the
aggregate, which provides a private view of the shared context, as well as the
individual’s additional source of influence on the shared context. FThus these
separate conceplts reflect the different needs and influences of the group end the
individual, allowing the group to communicate using shared and jointly defined
names, while providing a private view and sct of influences brought by cach
participant in that communication and sharing. ‘The recognition of this last idea of
naming as a social process is ol benefit to all members of the computer community.,
It expands the functionality achicvable by those involved in creating systems. “That
in itself is of benefit to clients of those systems as well, But it also extends the style
and mcans of interaction through naming toward what would be possible among
those clients outside the computational facility. The idea of communicating,
cooperating, and sharing responsibility for names and name management with
cxactly those clients sharing a common interest is the most important contribution of
this work to the future development of loosely coupled distributed computer

systems,

148

e L N
oy et PP R I I
o bedodd et bt ahnd

T AR Y ¥

to perform authentication. Thus, this rescarch proposes a further modification of
the functionality defined as naming. ‘This latter set of modifications allows the
rescarcher, architect, designer, and programmer to recognize and separate functions

and thereby reflect desired policies in a system more clearly and accurately.

The presentation in this rescarch of a model for a single, unificd naming lacility
providing local naming contributes a new idea to computer supported naming. As
mentioned carlier, several universal name servers have been proposed or built, but
they are remote services, not usclul for naming small, local objects frequently.
Addressing naming problems across application boundarics not only provides a
savings in terms of cfficiency by not repeating work, but in addition, allows for
greater functionality that a collection of separate naming facilities. The reason for
this is that it is difficult or impossible to usc naming to reflect relationships across

the boundaries of separate naming facilities.

An important contribution is the development of a method for joint management of
shared contexts. The method includes a representation of degrees of acceptance of a
name as a series of states. There are a few file systems, such as TOPS-20 [12] that
provide a much simplified version of this as a convenience (o the user. In that file
system, the delction procedure occurs in two stages, deletion and expunge. Deletion
is reversible for a limited period of time, while expunging is not reversible. This
mechanism allows uscrs to change their minds about deletion. The mechanism
proposed in this rescarch reflects the negotiation and shared use of names, so that as
a name’s usage increases, it is more likely to become generally accepted and as it
falls into disuse, it becomes more difficult to remember and use. This reflects the

contribution of a new concept to naming.

The final contribution is the recognition that naming is a social process of

communication. For this reason, the naming facility must distinguish the individual

147

R L. PRI .- - T . R T P U, N .
PURPWIIT SPUL . WUR NP W SR S S SR, . PR IR WL NS TP UL TNy DU DUy WS Wy WY DU T D VI Gy Wik (G G W

I PPV WPV Ao

e

e
P s i
PRSI S S D)

T R T e

7.3 Contributions

This work will conclude with a review of the major contributions of this rescarch.
‘The rescarch is a synthesis; it has pulled together ideas from several arcas, ideas that
in many cases have been recognized as uselul in particular situations, but have not

been recognized as part of a larger problem.

One contribution of this rescarch is the recognition that a computer naming lacility
should support cooperation, communication, and sharing of names. Sharing objects
or information has long been recognized as important, but sharing and cooperating
in managing names for those objects is less frequently recognized as a goal for a
naming facility. "This rescarch proposes that communication and sharing of names
as well as objects must be part of the goals of a naming facility. The bencfit of this
contribution is in achieving greater functionality through less restrictive and more

flexible naming.

A sccond contribution is the recognition that a computer naming facility should not
support non-naming functions, such as sclection, although naming facilitics may
have done this traditionally. Selection, involving mcans of distinguishing objects
from each «ther by other mechanisms than naming, such as performing
computatioi.. on the objects or various propertics of the objects, is not and should
not be considered naming. Separate facilities are needed for stich necessary
functions. In addition, names cannot gencrally be used to test for identity. Whether
two objects are in fact the same object is dependent on various factors such as the
types of the objects and the application using the objects. These should not and
cannot be known to the naming facility. Finally, in a related problem, naming

cannot be the only solution to authentication. Naming may be part of the solution,

but more information that is not susceptible to any significant degree of

masquerading or other forms of subversion of authentication procedures is neceded

146

T A A A - . L R T U S T, B T S I Ve S M S S S LI S LRI I
PRSPPI Nl Nl Wi Wit WP ST S PUBI T TSP, WD TRV ST RS U W SR Wpo W GREY WO W Bhow Saw .1 A_._A‘._._'- PO SIPNAPNY B P TN TS PN T e C P P A e e Y i

branching chronologically or the reverse reflecting the ancestry of an
individual, Thus, although the fexibility of an unconstrained network is
usclul in many cases, a ol for hicrarchical structuring may also be
benelictal. Further rescarch into this is needed. One way to study this
problem is 1o use one of the existing non-hicrarchical file systems to set
up experiments and observer human behavior,

7. 'The proposals ol this rescarch are aimed at solving naming problems for
small enough groups of uscrs (o permit reaching agreement and being
able to share responsibility for management ol namespaces. This may
break down il the community grows large. Name management lor large
groups has not been considered but needs further work because those
large loosely coupled communitics are growing in frequency of
occurrence,

8. Finally, the most open ended question in this arca, the nature of names
themscelves, their development and relationship to the objects being
named as well as the users of the names, can well afford further study.
This rescarch has examined names and naming carclully cnough to
identify various lactors about which there has been much confusion in
the past, but the concepts of names and naming arc sull far from being
well-defined.

Although the items in the list above cannot be listed in order of importance, some
deserve special attention, In looking toward computational facilities of the future,
there are two aspects of naming that need the most thought and attention. They
both are the result of the proliferation of personal computers with communications
capabilities and the hardware networks for that communication. It is of paramount
importance that the numing needs for very large communitics of communicators be
studied. Currently most developments are completely disorganized and achicved on
a local and ad hoc basis. In addition, as the uscr community extends beyond the
community of programmers and sophisticated users who have learned to manage in
alien environments, it becomes more important (0 support environments more
comfortable to humans. Several of the items listed above are aimed at that. The

other issuces raised above are also useful, although they are not as important as these

two.

e
(IR

145 e

.
s

.
IO Y

AP

PRI P IR I SN WL WL AT TE el SR WA VI WA DA WO W U T Sy Wy el oy Sy o . PR R

3.

0.

e e e e . B e
PN RPN S ST BPY SN SRAT ST W W VLU S0 I Wl ST . P o v

In the discussion of a programming support environment, it became
clear that the question of how selection is done, once naming has taken
place is an important problem for some applications, closely related to
naming. Although sclection has not been studied here, there may be
aspects of sclection that are common across application boundaries.
Some of the factors that may come into play are who uscd the objects in
question most recently, when, the types of the objects, and how the
objects were last used. Other factors may be important as well, as can be
scen in the literature on programming support environments. Further
work in this arca would certainly be beneficial.

- An interesting problem for which an adequate solution was not

proposed in this rescarch is initialization. "There are two parts o this
problem. ‘The first issue is how such a system will start at the very
beginning. The uestion of how the first context will be shared must be
addressed. A second part of initialization is how any individual will be
inttialized when joining a pre-cxisting community, ‘this problem was
considered in the discussion of the mail system, but further work is
nceded on it also.

. This rescarch suggests that glebally unigue names are neither useful nor

in fact implementable in general, with the expansion of the various
clectronically linked computational facilitics. Yet many rescarchers,
architects, designers, and builders of such distributed systems continue
to propose naming mechanisms based on an assumption of the existence
and usce of globally unique names. This rescarch suggests that humans
do not neced them and that they also are not needed in computer
systems, at least not globally unique names. Of course, local uniqueness
is possible and, in fact, necessary. Further thought, rescarch and
experimentation is needed in the arca of globally unigue names,

The proposal for the relationships among contexts in this rescarch is that
those relationships be unconstiained. [f one considers human naming,
there are many cxample of namespaces that form unconstrained
nctworks. On the other hand, when people are making an effort to
organize and cataloguce objects, they will often use a hicrarchical
structure. I the problem is very complex, they may usc several
hicrarchies with pointers from one to another. Consider briefly
genealogies, a method of organizing familial information. A gencalogy
is generally viewed as a hicrarchy with a root cither in the past and

144

et e T T e T el

LA ST o oty S oot i ek e e e

interpersonal communication. In attempting to do so in this rescarch many parts of
the problem could not be treated fully. “Fhe following is a list of such issucs in
increasing order of gencrality, Fach affords opportunitics for identifying both
possible weak points in the research as well as possible arcas for further research,

1. Consideration ol the implementation in the clectronic mail system leads
to a numbcer of possible improvements.

- The choice of a simple but little used mail system meant that few
users were found for it. An implementation in a more widely used
and better supported environment would be beaneficial. This
would allow studics along the lines of Carroll's, in order to obscrve
the patterns that humans choose, given the freedom to choose.

A further enhancement would be to extend the namable objects in
the mail system beyond the recipients. The other namable objects
in such an cnvironment would be messages, aggregates, and
contexts.

Onc might extend contexts to reflect a combination of the ideas of
this rescarch and those of Comer and Peterson [8] as well. This
rescarch has explored those ideas only within the domain of
naming. Such an extension would allow a decper study of the
social aspects of naming.

Finally, a more challenging implementation would be a broader
subsystem or system, such as the programming support
environment or a whole operating system. ‘This would require that
chients use only aggregates for all naming, being unable to step
outside such a system. It would provide a more controlled
cnvironment in which to study patterns of usage.

2. Chapter 4 cxplored the idea of how the determination of a statc of a
context entry is made. Much further work can and should be done to
examine these issues further. In order to learn more, cither surveys
could be done or systems could be built as previously suggested, that
would allow for testing of different factors, with means of measuring
user satisfaction with various factors. ‘The latter would only test
previously recognized factors, while the former might shed light on new
factors as well.

143 o

Tt el Lt et e T et . i . D A S TN .
PN R N Yl YA Sh U TSI W 00 WA JRIP RS N IOV S S N I

names. The mechanisms of contexts and aggregates including the joint management
lactlitics provide for sharing both the names themselves and responsibility for
managing them. This functionality is maintained from the model o the
implementation. Communication is supported both by the representation of the
names as string, atlowing lor information to be shared in the names themselves, as
well as inthe clectronic mail system using the mail itself as the medivm for passing
names around. The programming support environment did not proposc a particular
medium of communication, because in an implementation that will depend on the

characteristics of a supporting distributed system. “The third and f(inal goal was that

the model be implementable. That is demonstrated through the implementation of

the clectronic mail system and the implementable design for the programming

support system,

This scction has presented a review of the problem addressed in the rescarch
reported here, followed with a brief summary of the general proposal for a solution
and brief return to the two domains for application of the model. There must be
two further parts to such a review. A research project such as this cannot be
considered in isolation. There will be parts of the project or related issues that have
not been investigated fully or satisfactorily. In general such unfinished business
leads to suggestions for alternative or further work that would enhance the project.
‘The other side of this coin is a review of those arcas in which the research was
successful and has made uscful contributions. The following two sections will

address these to sides of such a review,

7.2 Lessons and Future Research

With a topic as broad as naming, the rescarch possibilities are endless, especially
when one attempts to walk the narrow line between facilities that are efficient

enough to be useful and those that more and more accurately mirror direct

142

ot e '; .‘
et end ol ki anth

among varying groups of participants communicating and cooperating only when
such joint activitics are needed. Federation is the norm and is assumed in both of
the implementation designs. Furthermore, names as used in the implementation
designs fall under the definition that they only be required to have an cquality
operation and can be used cither for access or as a place holder. In both domains,
names are chosen to be strings. In addition, in the clectronic mail implementation,
since the objects named can only be strings, the untranslate operation is also
guaranteed to be available. In the programming support environment, it is only
possible the untranslate if an cquality operation ¢xists for the objects named in a

context.

Five attributes can be used to describe a set of names: the assigners, the resolvers,
the wsers, the degree of unigueness, and the degree of meaningfulness. In both
donmiains, the assigners and users of the names are the same pool of participants,
although the programming support environment allows for some participants such
as a libranan to have spectal privileges in terms of defining names. In both
examples, the resolver of a name is always a specified aggregate that the
programmer or uscr can select. As for uniqueness, in the clectronic mail
implementation, no restrictions were placed on the number of assignments either of
a name or to an object. Some such limitations might be useful in the programming
support envirtonment, although the proposed mechanism does not enforce any.,
Fially, in considering attnbutes of names, since the assigners and users are
generally people and the names are strings in which humans can casily discern
meaning, the degree of meaningfulness is to whatever extent the human participants

destre and choose.

In terms of the goals of the naming facility, the first was to support the definition of
namcs; this is done in the two domains as discussed in the paragraph above. The

second goal required support for sharing and communication of and by use of those

141

et b

—h aia e A

of information about previous choices, but for efficiency itis probably better to limit -

this factor to such a simple form, R

The model

To address the problem of ereating a naming facility, this rescarch proposes a model

conzisting of a set of objects for cach client of the system. The objects are known as)
aggregates. Fach aggregate provides a private view to the client of a possibly shared
namespace. An aggregate is composed ol two parts, the shared namespace, known
as the current context, and the environment, that part of the aggregate that
personalizes it for this particular client. The current context contains the names
shared by the group, while the environment identifics a sct of other mappings
between names and objects which the individual client may wish to use as proposals
for the current context. The environment consists of a partially ordered set of other
namespaces in which this client is also a participant. Both the current context and
the environment are based on a simpler form of object, also proposed as part of this
rescarch, the context. A context also has two parts, a mapping from names to fo_ “
objects and a list of participants. ‘The model supports acceptance and deletion of 2
names in stages based on usage and jointly by the participants sharing responsibility

for the context. No particular structure is placed on cither the organization of

contexts or the internal structure of names within contexts. Instcad both of these are
left to the discretion of the participants in the sharing. The context provides the

basic mechanism for name translation and shared management of namespaces.

The implementation designs

The discussions of implementations demonstrate both the feasibility and uscfulness

of the mechanisms. A brief summary of how the problems and issucs of Chapter °

2 are rcflected in the domair - of clectronic mail and a programming support

environment and how the designs in those domains address the issues will scrve here

as a revicw of Chapters 5 and 6. In both domains, activity occurs in coopcration o
)

140

oy . . —— IR ANES AW S A s -aruh i s el i vt~ MM o

individuality into it. In the formation and reformation of cooperating groups,
names are frequently reused in different contexts and at different times to have A
different meaning. In addition, a particular object may have more than one name at

any given time reflecting cither different meanings and characteristics or different

perspectives. Both in order to achieve such multiplicity and because the size of a

untversal namespace is unmanageable, small, local namespaces are used. In
! addition, there are several more aspects of usage of names. Humans use a number

ol approaches o naming and gencrally do not restrict a particular approach to a

particular type of object. As mentioned carlier, names often have meanings that are e
conveyed between user and recipient when names themselves are shared. One final
4 point about human naming is that it appears to take tittle or no ¢ffort to choose,

share and use names both privately and cooperatively in a group. .

Cooperation T o

O a gn o~ a an
Tk @

Cooperation and joint management of names form the final part of the examination

of the problem of naming. This involves first recognizing that a name passes

through a number of stages from the time it is proposed until it is accepted as a

name for a particular object. There also may be a ranec of stages as a names falls
into disuse and is slowly forgotten or is more explicitly replaced. Many factors can L
be identified as potentially playing a role in these activities. A small number appear
to be both important and practical to implement in a computer system. The number
of uses of a name in association with an object is probably the single most important
fuctor. Frequency of use may also be quite important. Finally, the fact that a name .o
bears a similarity to another previously sclected name and that similarity has a

manifest meaning may make the later choice more readily acceptable. In current

file systems, an example of this is accepting a file name with an extension of "bin" as _ '..
the result of a compilation with the primary component being the same as the |

primary namec of a filc containing source code. This is a restricted and stylized use

139 i

Y

e

ol

in which cach brings some individuality to the joint clfort and within the
cooperation retains a certain degree of autonomy. Human naming has provided this
rescarch with both goals and examples on which to base solutions for two reasons.
First, humans function as an wmorphous set of federations that form and reform
unpredictably and when needed, using naming as part of the interaction within the
federations. Also, computer systems are built, in the end, o support humans in
their activities, Thercefore, this rescarch sct out to investigate the sort of naming that
humans do jointly. In order to understand the problem better, various parts of the

problem can be considered separately before looking at a solution,

Characteristics

A number of characteristics of names can be identified. First, there are three roles
related to names and naming, the assigner of a name, the resolver of a name, and the
user of a name. The assigner determines which name should be assoctated with
which object. The resolver performs name resolution or translation. The user of a
name can only use names that the assigner has chosen. 1f resolution is needed, then
the resolver must also be able to do its job for the user. The user will use a name
either to access the named object or as a place holder for the object. Beyond these
three characteristics of names, one can also consider the degrees of uniqueness and
meaningfulness of a name. [T a name is unique within the domain of a 1esolver, it
will be resolvable to no more than one object. The more meaningful a name is, the
more information the name itself carrics from name user to name receiver.

Meaningfulness may be manifested in the form of structure of names.

Observations

Returning to the analysis of the rescarch problem, a set of observations can be made
about how humans name the objects in their worlds. Humans use numes to a great
extent to communicate with each other. Part of that social process of

communicating also ir-olves ecach participant in that process bringing an

138

3. R. M. Needham. The CAP project - an interim evaluation. Sixth Symposium
on Opcerating Systems Principles, Special Interest Group on Operating Systems of A
the ACM, ACM, November, 1977, pp. 17-22. : ._

35. Do A Nowitz. Uuep Implementation Description. October, 1978

36. D. C.Oppen and Y. K. Dalal. The Clearinghouse: A Decentralized Agent for s
Locating Named Objects in a Distributed Environment. OPD T8103, Xerox Office °
Products Division, Systems Development Dept., October, 1981,

3. K. L Organick. The Multics Experience: An Examination of lis Structure.
M. LT, Press, Cambridge, Mass, 1972,

38. 1. B. Postel. Simple Mail Transfer Protocol. RFC 821, Network Information d
Center, August, 1982, 'The author is at USC IST, Marina del Rey, CA. :

39. W. V. 0. Quine. Word and Object. Technology Press of Massachusetts Institute
‘Technology and John Wiley & Sons, New York, 1960.

40. D. M. Ritchic and K. Thompson. The UNIX Time-Sharing System,
Communications Of The ACM 17,7 (July 1974), 365-374.

41. R. Rom. Name Assighment in Computer Networks. TR 1080-310-1, SRi _
International, October, 1982, e

42. 1. H. Saltzer. Naming and Binding of Objects. In Lecture Notes in Computer
Science, ol 60, Springer Verlag, New York, 1978, ch. 3, pp. 99-208.

43.). H. Saltzer, D.P. Reed, and D. D, Clark. Source Routing for Campus Wide o
Internet Transport. Local Networks for Computer Communications, 1FIP, 1BM
Rescarch Laboratory, Zurich, Switzerland, August, 1980, pp. 1-23. Also Proc. 1I-IP
Working Group 6.4 International Workshop on Local Networks

44. J. H.Saltzer. On the Naming and Binding of Network Destinations.
International Symposium on Local Computer Networks, IFIF/T.C.6, April, 1982.

45. E. E.Schmidt. Controlling Large Sofltware Development in a Distributed
Environment. CSIL. 82-7, Xcrox Corporation, December, 1982, Also Ph. D. Thesis
for the Dept. of Computer Science, University of California, Berkeley.

46. 1. F. Shoch. Internetwork Naming Addressing, and Routing. Proc. 17th IEEE
Computer Society International Conference, IEEE, September, 1978, pp. 72-79.
IEEE Cat. No. 78 CH 1388-8C.

152

......................

47. . SIGSOFT and SIGPLAN. Proc. ACM SIGSOFL/SIGPLAN . oftware
Inginecring Symposium on Practical Software Develc pment nvironments, April,
1984.

48. 1. E. Stoy and C. Strachey. OS6 - An experimental operating system for a small
computer Part 11 General principles and structure. The Computer Journal 15, 2
(May 1972), 117-124.

49.). E. Stoy and C. Strachey. OS6 - An experimental operating system for a small
computer Part 2 InputZoutput and filing system. The Computer Journal 15, 3
(August 1972), 195-203.

50. C. Sunshine. Source Routing in Computer Networks. Computer
Communications Review I, 7 (January 1977), 29-33.

51. [.. Svobodova. A Reliable Object-Oriented Repository for a Distributed
Computer System. Proceedings of the 8th Symposium on Opcrating Systems
Principles, Special Intercst Group on Operating Systems of the ACM,
December, 1981, pp. 47-58. Also published as Operating Systems Review, Vol. 15,
No. §

52. D. P. Reed and L. Svobodova. Swallow: A Distributed Data Storage System for
a Local Network. Proc. of the International Workshop on Local Networks, 1FIP
Working Group 6.4, Zurich, Switzerland, August, 1980.

53. L. Tesler. The Smalltalk Environment. Byre 6. 8 (August 1981), 90-147. This
isstic of Byte is devoted almost exclusively to the Smalltalk system.

54. 1. C.'Thomas and J. M. Carroll. Human Factors in Communication. [BM
Systems Journal 20, 2 (1981), 237-263.

55. W. F.Tichy. Software Decvelopment Control Based on Module
Interconnection. Proc. 4th Internation Conference on Software Engincering, ACM
SIGSOFT, Furopean Research Office, Gesellschaft fur Informatik, IEEE Computer
Socicty, Munich, Germany, September, 1979, pp. 29-41.

56. W. F.Tichy. Software Development Control Based on System Structure
Description. CMU-CS 80-120, Carncegic-Mcllon University, January, 1980. Also
Ph. D. Thesis

57. University of California. Unix Manual. 4.2 edition, Department of Computer
Science, University of California, Berkeley, California, 1983.

153

58. 1. Weinreb and D.Moon. Lisp Machine Manual. Fourth cdition, M.LT.
Artilicial Intelligence Laboratory, Cambridge, Mass., 1981.

59. J. K. White. A User-friecndly Naming Convention for Use in Communication
Networks. Computer Message Scrviees, [FIPWG6.5, Nottingham, England,

May, 1984, pp. 37-57. Proc.lF1P6.4 Working Conlerence hosted by Nottingham -
University and Plessey T
®
60. M. V. Wilkes and R. M. Nceedham. The Computer Science Library: Operating
and Programming Systems. Vol. 6: The Cambirdge CAP Computer and Iis
Operating System. North Holland, New York, 1979.
g
[

154

T DT T war——

g Appendix A
h Operations in the General Model

Y v v v -
RAREFAP ARG
Sttt

‘The operations here are in a Clu-like [30] form, in which the name of the operation
is followed by the names and (ypes of all arguments, the keyword returns, and the
types of the returned values. Although signals would also normally be included in a

Clu specification, they have been omitted here for simplicity.

A.1 Operations on Contexts
Operations for managirig contexis

create = proc returns (cvt)

merge_names = proc (contextl, context2: cvt)
merge_participants = proc (contextl, context2: cvt)
copy = proc (contextl: cvt) returns (cvt)

display = proc (contextl: cvt)

Operations for managing names in a context

translate == proc (contextl: cvt, name: string) returns (setfany])
untranslate —= proc (contextl: cvi, object: any) returns (set[names])
add_nami¢c = proc (contextl: cvt, name: string, object:any)
reserve_name = proc (contextl: cvi, name: string)

assign_object_to_reserved_name = proc (contextl: cvt, T

reserved_name: string, object: any) e
delete_name = proc (contextl: cvt, name: string) RN
delete_entry = proc (contextl: cvt, name: string, object: any) e

Operations on participants sharing a context

add_participant = proc (contextl: cvt, parlicipant_name: string) e
delete_participant = proc (contextl: ¢vt, participant_name; string) RS
get_participants = proc (contextl: cvt) returns array[string]

155

S R
- L L ‘Y " ‘. . N
‘a8) ok Pk

- e . - - .. . PR - .. . AT S PR o' e T a . O T R A N S
-~ . - - . . B . - . - -, - PR » . - . B . . N - - <. . - « - N . - o . - . at =, e EalnS . PR -
a e e T T T e e T T e T e e T T T T e T T DI T I T T P R L S N L P AR
PP INP LI AP LIPS LI S S WP AN S S T TP ULI W I S BT UIT RN N Bl Ul Sl G Aﬂ_.".'_.‘_.--~-1---~-s_.l L T AT PR)_“

A.2 Operations on Aggregates

Operations for managing aggregales

create = proc returns (cvt)

create_with_context = proc (contextl: context) returns (cvt)
merge_current_conlexts = proc (aggregatel, aggregate: cvt)
copy_current_context = proc (aggregatel, aggregate2: cvt)
merge_cnvironments = proc (aggregatel, aggregate?: cvt)
copy_cnvironment = proc (aggregatel, aggregate2: cvt)
display = proc (aggregatel: cvt)

Operations for name management in the current context

translate = proc (aggregatel: evt, name: string) returns (sctfany])

untranslate = proc (aggregatel: cvt, object) returns (seifstring]

add_name = proc (aggregatel: cvt, name: string, object: any)

reserve_name = proc (aggregatel: cvt, name: string)

assign_object_to_rescrved_name = proc (aggregatel: cvt, reserved_name: string,
object: any)

delete_name = proc (aggregatel: cvt, name: string)

delete_entry = proc (aggregatel: cvt, name: string, object: any)

get_current_context = proc (aggregatel: cvt) returns (context)

Operations for managing participant names

add_participant = proc (aggregatcl: cvt, participant_name: string)
delete_participant = proc (aggregatel: cvt, participant_namec;: string)
get_participants = proc (aggregatel: cvt) returns (set[string])

Operations for managing the environment of an aggregate

insert_rule = proc (aggregatel: cvt, rule: int, contextl: context)
append_rule = proc (aggregatel: cvt, context]: context)

add_to_rule = proc (aggregatel: cvt, rule: int, context: context)
maove_context_to_rule = proc (aggregatel: cvt, contextl: context)
delete_from_rule == proc (aggregatel:cvt, rule: int, contextl: context)
delete_rule = proc (aggregatel: cvt, rule: int)

get_cnvironment = proc (aggregatel: cvt) returns (array[setfcontext]])

Operation for sctting working aggregate

set_working_aggregate = proc (aggregate_name: string)

156

AT

T O A P T IR CA PR S S P T R L Se e %
PRLIPC ST WAL TP WG IR TP R I TPREPAE WP WO P TP ORI TR TR T W RS WU S W SN Y Wl P P L) o IR S Sy

Appendix B

Opcerations in the Mail Implementations

The operations in the user interface are functions in Mock Lisp [14]. Those functions
listed in the user interface that are followed by an asterisk (*) are invoked directly by
humans, whereas the others are only uscd indirectly. The operations supporting
contexts and aggregates are in a Clu-like [30] form as in Appendix A, In this case,
the signals have been included since they are in the code, and the text was taken

directly from the code currently in use.

B.1 Functions in User Interface

New functions in the user interface

Name of function Comment

list-aggregates* lists names of all aggregates

list-contexts® lists names of all contexts

display-aggregate* displays an aggregate, defaults to basic_a

display-context* displays a context, defaults to basic_c

display-environment* displays an cnvironment, defaults to basic_a

new-aggregate® creates a new aggregate

set-current-context* given an aggregate name, scts current context to
named context

sct-environment®* sets environment of one aggregate equal to the

environment of a second
append-to-current-context* appends the contents of a context to the
current context

expunge-aggregate* expunges all names deleted from current context
add-name* adds a specific entry o current context
dclete-entry* deletes a specific entry from current context
delete-name* deletes all entrics with given name from current context
change-status* changes state of an entry in the current context
expunge-context* expunges all names deleted from context

157

A I R BT R Lt - e v R

C e i et

PPN

AN SOt soeet snmn aees 2 SRS s -al BB Jh s g il wd s sesih et e IR e b e i Ahamin A g S T & BAE By T See T T Y TN T W T W TR TR e e v W

move-context* prompts for rule # of new location of context in

environment
add-to-rule* adds context to rule ‘
delete-from-rule* deletes context from rule
add-rule* creates a new rule
add-aggregate®* adds an aggregate ficld to a message -

this is the only new opceration that modifies
the .mailbox file

read-names only used indirectly when reading a message to
translate pames

send-names only used indircctly when sending a message to
translatc names

mail-help* displays this information

Functions modified in the user interface to the mail system

Name of function Comments

display-message used in displaying a message

quit* exit mailer

start-edit* begins mailer in send mode, stand-alone

send-mail* begins mailer in send mode from within emacs

init-mail used both stand-alone and within emacs to initialize
mail file

mail-mode scts definitions for using emacs in mail mode

load-mail loads mail from file into a large buffer

next-message-nd* goes to next undeleted message

previous-message-nd* goes to previous undcleted message

cdit-mail* enters buffer 1o create new message to send, from
rcading

forward-mail* forwards the current message

reply* replies to current mcssage

send-message* sends a message, forwarded message, or reply

B.2 Opcrations on Aggregates in the Mail System
Operations for aggregate management

create = proc (new_aname, new_ccname: string)
returns (cvt)
create_with = proc (new_name: string, curcont; context)

158

F o T e TV U S

R S PR A RS - SRS S B N O L ety e ST

o r et et . ST, D T L S TS N EOE TR S VR Y U TR YL N C VAT S TR

AP NI I L I YA Shl ST SR GREP TR Ul TP ULIP YL Y Shi YA T U PP U T U YW B T Sl W A TP Sl WA Thdr L. Iy P W

P "--.- -'-'-"‘
DR TR T T R Y W Y

W W P — T ———

TR
N T T T

returns (cvt)
equal = proc (aggregatel, aggregate2: cvt) returns (bool)
merge_new_ce = proc (aggregatel, aggregate?: v, new_cename: string)
copy = proc (new_aname, new_cenames: string, aggregatel:cvt)

returns (aggregate)
append_to_current_context = proc (aggregatel: cvi, contextl: context)
sel_current_context = proc (aggregatel: cvi, curreni_context: context)
getl_current_context = proc (aggregatel: cvt) returns (context)
get_my_name = proc (aggregatel: cvt) returns (string)
_ged = proc (x: cve, tab: ged_tab) returns (int)

Opcrations for name management

translate = iter (aggregatel: cvt, label: string, add_data: int, cond:
condtype) yiclds (string, int, bool) signals (no_such_name)

untranslate = iter (aggregatel: cvi, obj: string, add_data: int, cond:
condtype) yields (string, int, bool) signals (no_such_name)

add_name = proc (aggregatel: cvt, new_name, transformation: string,
add_data: int) returns (bool)

delete_name = proc (aggregatel: cvt, delname: string, del_data: int)

returns (bool)

delete_entry = proc (aggregatel: cvt, delname, deltranslation: string,
dei_data: int) returns (boot)

entry_status = proc (aggregatel: cvt, namel, objl: string) returns
(int)

force_state == proc (aggregatel: cvt, curr_name, curr_transl: string,
curr_state: state)

Operations for environment management

append_to_environment = proc (aggregatel, aggregate2: cvt) signals
(duplicate_id)

add_to_rule = proc (aggregatel: cvt, prior: int, labell: string,
contextl, context) signals (no_such_rule, already_used)

delete_from_rule = proc (aggregatel: ovt, label: string)

add_rule = proc (aggregatel: cvt, at_rule: int, label: string,
contextl: context) signals (out_of_bounds, already_uscd)

delete_rule = proc (aggregatel: cvt, del_rule: int) signals
(out_of_bounds)

list_environment = proc (aggregatel: cvt) returns (as)

move_rule -= proc (aggregatel: cvt, i, j: int) signals (out_of_bounds)

159

LI PR T P o, et - e S I AR
PPN Y O PR C I G TR ST IE LU P O, L . WL R LR

i N gt b e et M A e’ S B S AP S B el i T ——— . - - - T T T T Y

o RSN .. LTt e et R O ORI . - St e . gt e
A NP ACW SAE P e S AP SR W PRSP S S R S o WP VP T I PSSy CHPC R I imcamianied o ST G Yo L 3P R AP .

B.3 Operations on Contexts in the Mail System
Operations for context management

create = proc (cname: string)

equal = proc (contextl, context2: ¢vt) returns (bool)

copy = proc (old_context: cvi, new_name: string) returns (cvt)
append - - proc (contextl: context, contexi2: cvt)

_ped = proc(x: evt, tab: ged_tab) returns (int)

disp_list = iter (contextl: evt) yields (string)

get_name = proc (contextl: cvt) returns (string)

merge = proc (contextl, context12: cvt, new_name: string) returns (context)
get_ctext = proc (contextl:evt) returns (at)

get_my_name = proc (contextl: context) returns (string)
cxpunge = proc (contextl: cvt)

Operations for name management

accept = proc (context1: ¢cvt, new_name, new_translation: string,
add_data: int) returns (bool)
delete_name = proc (contextl: context, delname: string, del_data: int)
rcturns (bool)
delete = proc (contextl: evt, del_name, del_translation: string,
del_data: int) returns (bool)
translate = iter (contextl: cvt, label: string, add_data: int, cond: condtype)
yiclds (string, int, bool)
untranslate = iter (contextl:cvt, obj: string, add_data: int, cond: condtype)
yields (string, int, bool)
names = iter (context1: cvt) yields (string, state)
force_state = proc (contextl: evt, curr_name, curr_transl: string,
curr_state: state)
entry_status = proc (contextl: cvt, namel, objl: string) returns (int)

160

. Coete 0 .
L . ettt
— - OO et

NS NS ST Sl S S WL

Appendix C

Operations in the Programming Support Environment
8

C.1 Operations on Contexts and Aggregates

Both contexts and aggregates are parameterized by procedures. This is not standard
Clu syntax, but it has been done in the style of Clu syntax. ‘The parameterization
has been specitied in two equates on the names ol the clusters in order to simplify

reading.

Operations on Contexts
fquate for context type

contexta = context[emerge: proc (contextl, contex(2: cvt) returns (cvt),
acc, del: proc (contextl: evt, name: string, obj, state_data: any)]

All operations here are in the contexta cluster.

create = proc (merge_option: oncof[

"context] has priority, although context2 used also™,

"context2 has priority, although contextl uscd also”,

"only contextl used”,

programmer_supplied_proc: proc (contextl, context2: cvt) returns (cvt)],

acc, del: proc (contextl: evt, name: string, obj, state_date: any))
returns (cvt)

equal = proc (contextl, context2: cvt) returns (bool)
copy = proc (contextl: evt) returns (cvt)
display = iter (contextl: ¢vt) yiclds (string)
merge = proc (contextl, context2: cvt) returns (cvt)
translate = iter (contextl: cvt, name: string, state_data: any) yiclds (any)
untranslate = iter (contextl: cvt, obj, state_data: any) yiclds (string)
add_name = proc (contextl: cvt, name: string, obj, state_data: any)
reserve_name = proc (contextl: cvt, name: string, state_data: any)

161

add_reserved_name = proc (contextl: evt, previously_reserved_name, new_name:
string, state_data: any)

assign_obj_to_reserved_name = proc (contextl: cvi, reserved_name: string,
obj, state_data: any)

delete_entry = proc (contextl: cvt, name: string, obj, state_data: any)
delete_name = proc (context]: cvt, name: string, state_data: any)

cxpunge = proc (contextl: evt, state_data: any)

get_status = proc (contextl: cvt, name: string, obj: any) returns (string)
add_participant = proc (contextl: evt, participant_name: string)
delete_participant = proc (contextl: cvt, participant_namec: string)

get_participants = proc (contextl: cvt) returns (array[string))

Operations on Aggregates
Fquate for aggregate type

aggregatea = aggregate[amerge: proc (aggl, agg2: cvt) returns (cvt), acc,
del: proc (aggl: cvt, name: string, obj, state_data: any))

All operations here are in the aggregatea cluster

create = proc (cemerge_option: oneof]
"context] has priority, although context2 used also”,
"context2 has priority, although context] used also”,
“only contextl uscd”,
"only context2 used”,
"contextl to new cc, context2 first rule in new environment™,
"context2 1o new cc, contextl first rule in new environment”,
programmer_supplicd_ccmerge: proc (aggl, agg2, agg3: cvt, state_data:
any) returns (cvt)],
envmerge_option: oncof]
"env] has priority, env2 in succeeding rules”,
"env2 has priority, envl in succeeding rules”,
"envl only”,
"env2 only",
"merge two rule by rule”,
programmer_supplied_envmerge: proc (aggl, agg2, agg3: cvt) returns (cvi)],
acc, del: (aggl: cvt, name: string, obj, state_data: any)) returns (cvt)
set_current_context_to = proc (aggl, agg2: cvt)
copy_current_context = proc (aggl, agg2: cvt)

162

merge_current_contexts = proc (aggl, agg2, agg3: ovt, state_data: any)
returns (cvt)

copy_cnvironment = proc (aggl, agg2: cvt) °

append_cnv = proc (aggl, agg2: cvt) -

merge_cnvironments = proc (aggl, agg2, ageld: cvt, state_data: any)
returns (cvt)

copy = proc (aggl: ¢vt) returns (cvt)

cisplay = proc (aggl: cvt) yields (string) L

translate = iter (aggl: evt, name: string, state_data: any) yields (any) '

untranstate = iter (aggl: cvt, obj, state_date: any) yields (any)

add_name = proc (aggl: cvt, name: string, obj, state_data: any)

reserve_name = proc (aggl, cvt, name: string, state_data: any)

add_reserved_name = proc (aggl: cvt, previously_reserved_name, new_name:
string, state_data: any)

assign_obj_to_reserved_name = proc (aggl: cvt, reserved_name: string, obj,
stute_data; any)

delete_entry = proc (aggl: cvi, name: string, obj, state_data: any)

delete_name = proc (aggl: cvt, hame: string, state_data: any)

expunge = proc (aggl: cvt, state_data: any) L

gel_status = proc (aggl: cvt, name_ string, obj: any) returns (string) . el

add_particioant = proc (aggl: cvt, participant_name: string)

delete_participant = proc {(contextl: cvt, participant_name: string) "' e

get_participants = proc (aggl: cvt) returns (array[string]) e

add_rule = proc (aggl: cvt, rule: int, contextl: contexta) o

append_rule = proc (aggl: cvt, contextl: contexta) j:Zj .

add_to_rule = proc (aggl: cvt, rule: int, contextl: contexta) e .:‘?:

move_rule = proc (aggl: cvt, old_rule, new_rule: int) e

delete_from_rule = proc (aggl: cvt, rule: int, contextl: contexta)

delete_rule = proc (aggl: cvt, rule: int)

get_cnvironment = proc (aggl: cvt) returns (array[string])

C.2 Operations on Library Contexts R
The library _context type (or type gencrator) will have all the context operations of
Appendix C.1 as well as these few others. As with the context type generator,

library_context is a types gencrator, also parameterized by the same procedures as

context.

163

4
K
J
[
r
r
r
4
4
[
.
4
4
]
4
4
A
4

A A M A e i

sct_required_name = proc (library_contextl: cvt, name: string, t Lype)
set_optional_name = proc (library _contextl: evt, name: string, t: type)
move_library_reference = proc (old_library: evt, old_name: string,
object: any, new_fibrary: cvi, new_name: string)
update_indirect_library_refercnees = proc (library_contextl: cvt)

C.3 Operations on Template Aggregates

‘These are the additional operations needed for template aggregates, beyond those
histed for aggregates in Appendix C.1. "There is one difference here. ‘The standard
create operation of aggregates will not be transferred (o the template_aggregate type
generator, Instead, a separate create operation has been included heie, creating a
template_aggregate from a pre-existing aggregate.

create = proc (aggregatel: aggregate) returns (cvt)

merge = proc (lemplate_aggregatel: ovt, client_aggregate: aggregate) returns

(aggregate)

shared_current_context = proc (template_aggregatel: cvt, "shared” |
"not_shared”)

.
'. .- LT 1
164 B

.
')

. et e Tt PR P S SR Nttt B S T R T A I R N .
RO ORI PP R W, ST T € VG Sl Wb SR 1 S, S Sl SO, T . S S S S S = >

s
K . e

i. Lot A
l.' 'LA_J R » o3

T P —— T ——————— T

OFFICIAL DISTRIRUTION LIET

1985

.rector

iformation Processing Techniques Office
:fense Advanced Research Projects Agency
100 Wilson Boulevard

‘lington, vaA 22209

‘fice of Naval Research

)0 North Quincy Street
-linaton, VA 22217

:tn: Dr. R. Grafton, Code 433

.rector, Code 2627
1val Research Laboratory
ishingten, DC 20375

fense Technical Information Center
imeron Station
.exandria, VA 22314

itional Science Foundation
‘“fice cf Computinc Activities
00 G. Street, N.W.

tshincton, DC 20550

.tn: Prograr Director

. E.B. Rovce, Code 38
rad, Research Department
ival weapons Center

i1ina Lake, CA 935535

. G. Hopper, USNR
WWDAC-00H

'partment of the Navy
tishinaoton, DC 20374

T T P S T A AL A I A e R T
CHR™ SRR JRD- S I S S S N TS "Bl el el WP Y NP Rl Gl el WadS B Wt W WY

(3]

12

YT

Copies

Copies

Covies

Coples

Ccriles

Copy

cw Y~ w—w

o

FILMED

7—-85

